Theorem 1 is obtained in collaboration with A.S. Mamontov.

The work has been supported by the Russian Foundation of Basic Research (projects NN 06-01-39001, 08-01-00322), by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (grant NSh-344.2008.1) and by the Siberian Branch of RAS (complex integration project 2008.01.02)

THE BLOCK STRUCTURE OF UNIPOTENT ELEMENTS FROM SUBSYSTEM SUBGROUPS OF TYPE A_3 IN SPECIAL MODULAR REPRESENTATIONS FOR GROUPS OF TYPE A_n

A.A. Osinovskaya

(A joint work with I.D. Suprunenko)

Institute of Mathematics, National Academy of Sciences of Belarus

11 Surganov str., 220072 Minsk, Belarus

anna@im.bas-net.by

For $p \ge 11$ the Jordan block structure of regular unipotent elements from a subsystem subgroup of type A_3 in p-restricted irreducible representations of the group of type A_n over fields of characteristic p whose highest weights have three consequent zero coefficients is described.

Let $\mathbb C$ be a field of complex numbers, $\mathbb N$ be a set of positive integers, $\mathbb N_a^b = \{i \in \mathbb N \mid a \leqslant i \leqslant b\}$, let K be an algebraically closed field of characteristic p>0, $G=A_n(K)$, n>3, and let ω_i $(1\leqslant i\leqslant n0)$ be the fundamental weights of G. A subsystem subgroup of G is generated by root subgroups associated with all roots from a certain subsystem of a root system of G. Further $z\in G$ is a regular unipotent element from a subsystem subgroup of type A_3 . For a representation ϕ of an algebraic group S (for a S-module M0 and a unipotent element $u\in S$ denote by $J_{\phi}(u)$ the set of Jordan block sizes of a representation ϕ without their multiplicities. A dominant weight $\omega=a_1\omega_1+\ldots+a_n\omega_n$ and an irreducible representation ϕ of G with such highest weight are called p-restricted if all $a_i < p$. Put $s(\phi)=1+3a_1+4a_2+\ldots+4a_{n-1}+3a_n$, $m(\phi)=\min(p,s(\phi))$ and $\omega^*=a_n\omega_1+\ldots+a_1\omega_n$. It is well known that ω^* is a highest weight of a representation dual to ϕ .

Theorem 1. Let $p \ge 11$, ϕ be a p-restricted irreducible representation of G with the highest weight $\omega = a_1\omega_1 + \ldots + a_n\omega_n$. Suppose that $a_k = a_{k+1} = a_{k+2} = 0$ for some i < n-1 and $m(\phi) = s(\phi)$. Then $J_{\phi}(z)$ equals to the same set for an irreducible representation of $A_n(\mathbb{C})$ with the highest weight ω and either $J_{\phi}(z) = \mathbb{N}_1^{m(\phi)}$, or one of the following conditions holds:

- 1) $\omega = a_1\omega_1 + a_n\omega_n$, $a_1a_n \neq 0$, $a_1 + a_n > 2$, $J_{\phi}(z) = \mathbb{N}_1^{m(\phi)} \setminus \{3a_1 + 3a_n\}$;
- 2) ω or $\omega^* = a_1\omega_1$, $a_1 > 2$, $J_{\phi}(z) = \mathbb{N}_1^{m(\phi)} \setminus \{3a_1, 3a_1 1, 3a_1 4, 2\}$;
- 3) $\omega = \omega_1 + \omega_n$, $J_{\phi}(z) = \{7, 5, 4, 3, 1\}$;
- 4) ω or $\omega^* = 2\omega_1$, $J_{\phi}(z) = \{7, 4, 3, 1\}$;
- 5) $\omega = \omega_j$, 1 < j < n, $J_{\phi}(z) = \{5, 4, 1\}$;
- 6) ω or $\omega^* = \omega_1$, $J_{\phi}(z) = \{4, 1\}$.

Theorem 2. Let p, ϕ , ω are the same as above, but $m(\phi) < s(\phi)$. Then $|J_{\phi}(z)| \ge p-3$ and one of the following conditions holds:

- 1) $J_{\phi}(z) = \mathbb{N}_1^p$;
- 2) $p \equiv 2 \pmod{3}$, ω or $\omega^* = \frac{p+1}{3}\omega_1$, $J_{\phi}(z) = \mathbb{N}_3^{p-4} \cup \{1, p-1, p\}$;
- 3) ω or $\omega^* = a_k \omega_k + \ldots + a_l \omega_l$, $k \leq l < n-2$, $a_k a_l \neq 0$. a_l or $a_{l-1} + a_l = p-1$, $a_j + a_{j+1} + a_{j+2} \neq 0$ for k < j < l, a_k or $a_{k+1} + a_k = p-1$ for k > 3, $\mathbb{N}_1^p \setminus \{2, p-2\} \subset J_{\phi}(z)$;
- 4) ω or $\omega^* = a_1 \omega_1$, $a_1 > \frac{p+1}{3}$, $\mathbb{N}_1^p \setminus \{2, p-2\} \subset J_{\phi}(z)$;
- 5) $p \equiv 1 \pmod{3}$, ω or $\omega^* = \frac{p-4}{3}\omega_1 + \omega_j$, 1 < j < n, $\mathbb{N}_1^p \setminus \{p-1\} \subset J_{\phi}(z)$.

This research was supported by the Belarus Basic Research Foundation in the framework of project F06-176.

ON Q-CONIC BUNDLES

Yu. Prokhorov

Moscow State University, Moscow, Russia prokhoro@mech.math.msu.su

The talk is based on joint works with Shigefumi Mori [1-3].

A Q-conic bundle is a proper morphism from a threefold with only terminal singularities to a normal surface such that fibers are connected and the anti-canonical divisor is relatively ample. We study the structure of Q-conic bundles near their singular fibers. The complete classification of Q-conic bundles is obtained under the additional assumption that the base surface is singular. In particular, we show that the base surface of every Q-conic bundle has only Du Val singularities of type A (a positive solution of a conjecture by Iskovskikh). Under 6ertain additional assumptions we prove M. Reid's general elephant conjecture.

References

- 1. Mori S., Prokhorov Y. On Q-conic bundles // Publ. RIMS. 2008. V. 44, P 315-369.
- 2. Mori S., Prokhorov Y. On Q-conic bundles, II // arXiv:math. AG/0710.0792, Publ. RIMS (to appear).
- 3. Mori S., Prokhorov Y. On Q-conic bundles, III // in preparation.

EXISTENCE AND CONJUGACY OF HALL SUBGROUPS IN FINITE GROUPS

D.O. Revin, E.P. Vdovin

Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyg av., 630090 Novosibirsk, Russia {revin,vdovin}@math.nsc.ru

The term "group" always means a finite group. In what follows π is a set of primes, π' is its complement in the set of all primes, $\pi(n)$ is the set of all prime divisors of a rational integer n. A positive integer n is called a π -number if all its prime divisors are in π . For a group G we set $\pi(G)$ to be equal to $\pi(|G|)$. A subgroup H of G is called a π -Hall subgroup if $\pi(H) \subseteq \pi$ and $\pi(|G:H|) \subseteq \pi'$.

According to P. Hall, we say that G satisfies E_{π} (or briefly $G \in E_{\pi}0$, if G contains a π -Hall subgroup. If $G \in E_{\pi}$ and every two π -Hall subgroups are conjugate, we say that G satisfies C_{π} ($G \in C_{\pi}0$). If $G \in C_{\pi}$ and each π -subgroup of G is included in a π -Hall subgroup of G, we say that G satisfies D_{π} ($G \in D_{\pi}0$). Let A, B, H be subgroups of G such that $B \subseteq A$ and