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For p 2 11 the Jordan block structure of regular unipotent elements from a subsystem
subgroup of type Az in p-restricted irreducible representations of the group of type A, over
fields of characteristic p whose highest weights have three consequent zero coefficients is described.

Let C be a field of complex numbers, N be a set of positive integers, N2 = {i e N|a <1 < b},
let K be an algebraically closed field of characteristic p > 0, G = Ax(K), n > 3, and let wj;
(1 €1 < n0 be the fundamental weights of G. A subsystem subgroup of G is generated by
root subgroups associated with all roots from a certain subsystem of a root system of G. Further
z € G is a regular unipotent element from a subsystem subgroup of type As. For a representation
¢ of an algebraic group S (for a S-module M0 and a unipotent element u € S denote by Jy(u)
the set of Jordan block sizes of a representation ¢ without their multiplicities. A dominant weight
w = ayuy + ... + apw, and an irreducible representation ¢ of G with such highest weight are
called p-restricted if all e, < p. Put s(¢p) = 1 + 3a; +4as + ... +4ay-1 + 3an, mi{¢) =
= min(p, s(¢)) and w* = apwy + ... + awy. It is well known that w* is a highest weight of a
representation dual to ¢.

Theorem 1. Let p 2 11, ¢ be a p -restricted irreducible representation of G with the highest
weight w = ajwy + ... + apwy. Suppose that ay = agq1 = af.9 = 0 for some i < n—~1 and
m(¢) = s(¢). Then Jy(z) equals to the same set for an irreducible representation of An(C) with

the highest weight w and either Jy(z) = NT’(@, or one of the following conditions holds:

1) w=a1w) + Gnwn, G105 #0, a1 +an >2, Js(z) = NP\ {3¢; + 3an} ;
2) worw=awi, a1 >2, Ju(z)= N?ln(@ \ {3a1,3a1 — 1,3a; ~ 4,2} ;

3) w=wi+wn, Jp(2)=1{7,54,3,1};

4) w or w*=2wy, Jp(2) ={7,4,3,1},

5) w=uwj, 1<j<n, Jp(2) ={5,4,1};

6) w or w*=wy, Jy(z) = {41}

Theorem 2. Let p, ¢, w are the same as above, but m(¢) < s(¢). Then |Jp(2)] 2 p—3
and one of the following conditions holds:
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1) Jo(z) =Np;
2) p=2( mod3), w or w* =W, Jp(z) = NG U {l,p - 1,p};

3) worw =agwp+... tawn, k<I<n—2, agar #0. o or qy1+ar=p-1, aj+a; 1+
+a;42#0 for k<j<l, ag or agpr+ar=p—1 for k>3, NY\{2,p—2} C Jy(2):

4) wor w =aw, a; >, N\ {2,p—2} C Ju(2);
5 p=1( mod3), w or w' =81w +w, 1<j<n, N\ {p~1}CJys(z).
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A Q-conic bundle is a proper morphism from a threefold with only terminal singularities to
a normal surface such that fibers are connected and the anti-canonical divisor is relatively ample.
We study the structure of Q-conic bundles near their singular fibers. The complete classification
of Q-conic bundles is obtained under the additional assumption that the base surface is singular.
In particular, we show that the base surface of every Q-conic bundle has only Du Val singularities
of type A (a positive solution of a conjecture by Iskovskikh). Under 6ertain additional assurnptions
we prove M. Reid’s general elephant conjecture.
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The term “group” always means a finite group. In what follows = is a set of primes, 7’ is its
complement in the set of all primes, w(n) is the set of all prime divisors of a rational integer n.
A positive integer n is called a 7 -number if all its prime divisors are in 7. For a group G we
set 7(G) to be equal to 7(|G|). A subgroup H of G is called a m-Hall subgroup if n(H) C =
and (|G : H|) C #',

According to P. Hall, we say that G satisfies E, (or briefly G € E,0,if G contains a #-Hall
subgroup. If G € E; and every two w-Hall subgroups are conjugate, we say that G safisfies
Cr (G € Cr0. If G € Cr and each w-subgroup of G is included in a = -Hall subgroup of G,
we say that G satisfies D; (G € D,0. Let A, B, H be subgroups of G such that B < A and



