examples of conformal algebras is provided by conformal endomorphisms. Let us state the corresponding notion in a little bit more general context.

Let G be a linear algebraic group over an algebraically closed field k and let H be its coordinate Hopf algebra. A G-conformal endomorphism of a left H-module M is a map $a:G\to \operatorname{End}_k M$ such that

- for every $u \in M$ the map $\gamma \mapsto a(\gamma)u$ is a regular function from G to M;
- $a(\gamma)h = L_{\gamma}ha(\gamma)$ for $h \in H$, $\gamma \in G$, where $L_{\gamma}h : x \mapsto h(\gamma x)$, $x \in G$.

In the case of $G = \mathbb{A}^{\mathbb{H}} \simeq (\mathbb{K}, +)$, char $\mathbb{K} = 0$, this notion corresponds to the one of [2]. Denote by Cend M the space of all G-conformal endomorphisms of an H-module M.

Definition 1. A G-conformal representation of a quantum Leibniz algebra \mathfrak{g} on an H-module M is a linear map $\rho: \mathfrak{g} \to \operatorname{Cend} \mathfrak{M}$ such that

$$\rho(a)(e)(\rho(b)(\gamma)v) - \sum_{i} \rho(b_i)(\gamma)(\rho(a_i)(e)v) = \rho([a,b])(\gamma)v,$$

where $\sum_i b_i \otimes a_i = \sigma(a \otimes b)$, $a, b \in \mathfrak{g}$, $\gamma \in G$, $v \in M$, e is the unit of G.

Theorem 1. If G is a linear algebraic group such that H contains a primitive element then a (finite-dimensional) quantum Leibniz algebra has a faithful G-conformal representation on an appropriate (finitely generated) H-module M.

For example, every finite-dimensional quantum Leibniz algebra can be embedded into the conformal algebra (over $G = \mathbb{A}^{\mathbb{F}} F$ Cend M, where M is a finitely generated free $\mathbb{K}[T]$ -module.

References

- 1. Woronowicz S.L. Differential calculus on compact matrix pseudogroups (quantum groups) // Comm. Math. Phys. 1989. V. 122. P. 125-170.
- 2. Kac V.G. Vertex algebras for beginners. Second edition. Providence, RI: AMS, 1998. (University Lecture Series, vol. 10).

PERIODIC GROUPS WITH PRESCRIBED ELEMENT ORDERS

V.D. Mazurov

Sobolev Institute of Mathematics, the Siberian Branch of Russian Academy of Sciences,
Novosibirsk, 630090, Russia
mazurov@math.nsc.ru

For a periodic group G, denote by $\omega(G)$ the *spectrum*, i.e. the set of element orders, of G. It is obvious that $\omega(G)$ is finite if and only if G is of finite exponent. Thus, a group with finite spectrum is not necessarily a locally finite group.

The talk contains a survey of known spectra which ensure the local finiteness of corresponding groups. The following recent results are typical.

Theorem 1. Let $\omega(G) = \{1, 2, 3, 5, 6\}$. Then G is locally finite.

Theorem 2. Let $\omega(G) = \{1, 2, 3, 4, 8\}$. Then G is locally finite.

Theorem 1 is obtained in collaboration with A.S. Mamontov.

The work has been supported by the Russian Foundation of Basic Research (projects NN 06-01-39001, 08-01-00322), by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (grant NSh-344.2008.1) and by the Siberian Branch of RAS (complex integration project 2008.01.02)

THE BLOCK STRUCTURE OF UNIPOTENT ELEMENTS FROM SUBSYSTEM SUBGROUPS OF TYPE A_3 IN SPECIAL MODULAR REPRESENTATIONS FOR GROUPS OF TYPE A_n

A.A. Osinovskaya

(A joint work with I.D. Suprunenko)

Institute of Mathematics, National Academy of Sciences of Belarus

11 Surganov str., 220072 Minsk, Belarus

anna@im.bas-net.by

For $p \ge 11$ the Jordan block structure of regular unipotent elements from a subsystem subgroup of type A_3 in p-restricted irreducible representations of the group of type A_n over fields of characteristic p whose highest weights have three consequent zero coefficients is described.

Let $\mathbb C$ be a field of complex numbers, $\mathbb N$ be a set of positive integers, $\mathbb N_a^b = \{i \in \mathbb N \mid a \leqslant i \leqslant b\}$, let K be an algebraically closed field of characteristic p>0, $G=A_n(K)$, n>3, and let ω_i $(1\leqslant i\leqslant n0)$ be the fundamental weights of G. A subsystem subgroup of G is generated by root subgroups associated with all roots from a certain subsystem of a root system of G. Further $z\in G$ is a regular unipotent element from a subsystem subgroup of type A_3 . For a representation ϕ of an algebraic group S (for a S-module M0 and a unipotent element $u\in S$ denote by $J_{\phi}(u)$ the set of Jordan block sizes of a representation ϕ without their multiplicities. A dominant weight $\omega=a_1\omega_1+\ldots+a_n\omega_n$ and an irreducible representation ϕ of G with such highest weight are called p-restricted if all $a_i < p$. Put $s(\phi)=1+3a_1+4a_2+\ldots+4a_{n-1}+3a_n$, $m(\phi)=\min(p,s(\phi))$ and $\omega^*=a_n\omega_1+\ldots+a_1\omega_n$. It is well known that ω^* is a highest weight of a representation dual to ϕ .

Theorem 1. Let $p \ge 11$, ϕ be a p-restricted irreducible representation of G with the highest weight $\omega = a_1\omega_1 + \ldots + a_n\omega_n$. Suppose that $a_k = a_{k+1} = a_{k+2} = 0$ for some i < n-1 and $m(\phi) = s(\phi)$. Then $J_{\phi}(z)$ equals to the same set for an irreducible representation of $A_n(\mathbb{C})$ with the highest weight ω and either $J_{\phi}(z) = \mathbb{N}_1^{m(\phi)}$, or one of the following conditions holds:

- 1) $\omega = a_1\omega_1 + a_n\omega_n$, $a_1a_n \neq 0$, $a_1 + a_n > 2$, $J_{\phi}(z) = \mathbb{N}_1^{m(\phi)} \setminus \{3a_1 + 3a_n\}$;
- 2) ω or $\omega^* = a_1\omega_1$, $a_1 > 2$, $J_{\phi}(z) = \mathbb{N}_1^{m(\phi)} \setminus \{3a_1, 3a_1 1, 3a_1 4, 2\}$;
- 3) $\omega = \omega_1 + \omega_n$, $J_{\phi}(z) = \{7, 5, 4, 3, 1\}$;
- 4) ω or $\omega^* = 2\omega_1$, $J_{\phi}(z) = \{7, 4, 3, 1\}$;
- 5) $\omega = \omega_j$, 1 < j < n, $J_{\phi}(z) = \{5, 4, 1\}$;
- 6) ω or $\omega^* = \omega_1$, $J_{\phi}(z) = \{4, 1\}$.

Theorem 2. Let p, ϕ , ω are the same as above, but $m(\phi) < s(\phi)$. Then $|J_{\phi}(z)| \ge p-3$ and one of the following conditions holds: