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examples of conformal algebras is provided by conformal endomorphisms. Let us state the corre-
sponding notion in a little bit more general context.

Let G be a linear algebraic group over an algebraically closed field k and let H be its
coordinate Hopf algebra. A G -conformal endomorphism of a left H -module M isamap a:G —
— Endg M such that

e for every u € M the map v — a{v)u is a regular function from G to M ;
o a(y)h = Lyha(y) for he€ H, 7€ G, where Lyh:x— h{yz), z €G.

In the case of G = A ~ (k,+), chark = 0, this notion corresponds to the one of {2]. Denote
by Cend M the space of all G -conformal endomorphisms of an H -module M.

Definition 1. A G -conformal representation of a quantum Leibniz algebra g on an II -
module M 1s a linear map p: g — CendM such that

pla)(e)(p(b)}()v Zp(b) Np(a.)(e)v) = pla, b])(7)v,

where ). b,®a, =c(a®b), a,b€g, YEG, vEM, e isthe umt of G.

Theorem 1. If G is a linear algebraic group such that H contains a primitwve element then
a (finite-dimensional) quantum Leibniz algebra has a faithful G -conformal representation on an
appropriate (finitely generated) H -module M.

For example, every finite-dimensional quantum Leibniz algebra can be embedded into the
conformal algebra (over G = A¥F Cend M, where M is a finitely generated free k[T]-module.
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For a periodic group G, denote by w(G) the spectrum, i.e. the set of element orders, of G.
It is obvious that w(G) is finite if and only if G is of finite exponent. Thus, a group with finite
spectrum is not necessarily a locally finite group.

The talk contains a survey of known spectra which ensure the local finiteness of corresponding
groups. The following recent results are typical.

Theorem 1. Let w(G)=1{1,2,3,5,6}. Then G is locally finite.

Theorem 2. Let w(G) = {1,2,3,4,8}. Then G 1is locally finite.
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For p 2 11 the Jordan block structure of regular unipotent elements from a subsystem
subgroup of type Az in p-restricted irreducible representations of the group of type A, over
fields of characteristic p whose highest weights have three consequent zero coefficients is described.

Let C be a field of complex numbers, N be a set of positive integers, N2 = {i e N|a <1 < b},
let K be an algebraically closed field of characteristic p > 0, G = Ax(K), n > 3, and let wj;
(1 €1 < n0 be the fundamental weights of G. A subsystem subgroup of G is generated by
root subgroups associated with all roots from a certain subsystem of a root system of G. Further
z € G is a regular unipotent element from a subsystem subgroup of type As. For a representation
¢ of an algebraic group S (for a S-module M0 and a unipotent element u € S denote by Jy(u)
the set of Jordan block sizes of a representation ¢ without their multiplicities. A dominant weight
w = ayuy + ... + apw, and an irreducible representation ¢ of G with such highest weight are
called p-restricted if all e, < p. Put s(¢p) = 1 + 3a; +4as + ... +4ay-1 + 3an, mi{¢) =
= min(p, s(¢)) and w* = apwy + ... + awy. It is well known that w* is a highest weight of a
representation dual to ¢.

Theorem 1. Let p 2 11, ¢ be a p -restricted irreducible representation of G with the highest
weight w = ajwy + ... + apwy. Suppose that ay = agq1 = af.9 = 0 for some i < n—~1 and
m(¢) = s(¢). Then Jy(z) equals to the same set for an irreducible representation of An(C) with

the highest weight w and either Jy(z) = NT’(@, or one of the following conditions holds:

1) w=a1w) + Gnwn, G105 #0, a1 +an >2, Js(z) = NP\ {3¢; + 3an} ;
2) worw=awi, a1 >2, Ju(z)= N?ln(@ \ {3a1,3a1 — 1,3a; ~ 4,2} ;

3) w=wi+wn, Jp(2)=1{7,54,3,1};

4) w or w*=2wy, Jp(2) ={7,4,3,1},

5) w=uwj, 1<j<n, Jp(2) ={5,4,1};

6) w or w*=wy, Jy(z) = {41}

Theorem 2. Let p, ¢, w are the same as above, but m(¢) < s(¢). Then |Jp(2)] 2 p—3
and one of the following conditions holds:



