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Abstract
Statistical estimators for the parameters of the binary Markov chain with par-

tial connections under additive distortions are presented. Using these estimators,
we recover the model parameters of Geffe’s generator by its output sequence.

1 Introduction

Cryptographic generators play an important role in information security. Many cryp-
tographic generators use linear feedback shift registers (LFSRs) as building blocks [1].
One of the ways of combining LFSRs gives Geffe’s generator [1]. This generator consists
of three LFSRs connected as shown in Figure 1.
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Figure 1: The scheme of Geffe’s generator
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Suppose that the three LFSRs have distinct primitive characteristic polynomials of
degree s1, s2, and s3, respectively. The generator would then have [1] linear complexity
(s1 + s2)s3 + s1 and period lcm(2s1 − 1, 2s2 − 1, 2s3 − 1). Thus, Geffe’s generator has
attractive properties (period, linear complexity).

In this paper, we present a new method based on the binary Markov chain with
partial connections under additive distortions for estimating the model parameters of
Geffe’s generator.



2 The Markov chain with partial connections

Let A = {0, 1, . . . , N − 1} be a finite set; Jk
i = (ji, ji+1, . . . , jk) ∈ Ak−i+1 be a subse-

quence of k − i + 1 indices, k ≥ i; {xt} be a homogeneous and ergodic Markov chain
of the s-th order with the state space A, the transition probabilities

pJs+1
1

= P{xt+s = js+1|xt+s−1 = js, . . . , xt = j1}, Js+1
1 ∈ As+1, t ∈ N.

Definition 1. The Markov chain {xt} is called the Markov chain of the s-th order with
r partial connections and is denoted by MC(s, r) [2] if
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1

= pj1,...,js,js+1 = qj
m0

1
,...,j

m0
r
,js+1 , Js+1

1 ∈ As+1, (2)

where r ∈ {1, 2, . . . , s} is the number of connections; M0
r = (m0

1, . . . , m
0
r) ∈ M is the

integer-valued vector with r order components 1 = m0
1 < m0

2 < . . . < m0
r ≤ s, called the

pattern, M is the set of all such vectors; Q =
(
qJr+1

1

)
Jr+1
1 ∈Ar+1 is the stochastic matrix.

Relationship (2) means that the transition probability of the process {xt} to the
state js+1 depends not on all s preceding states j1, . . . , js but only on r selected states
jm0

1
, . . . , jm0

r
. Thus, the transition matrix for the MC(s, r) is completely determined by

N r(N−1) parameters, instead of N s(N−1) parameters. The Markov chain with partial
connections is the stochastic generalization of LFSR [1], where the length of LFSR is
the order s, the number of the nonzero coefficients of the characteristic polynomial is
the number of connections r, the indexes of the nonzero coefficients is the pattern M0

r .
Introduce the notation: Xn

1 = (x1, x2, . . . , xn) ∈ An is the realization of the MC(s, r)
of the length n > s; F

(
J i+s−1

i ; Mr

)
= (ji+m1−1, ji+m2−1, . . . , ji+mr−1) is the selector of

the r-th order for some pattern Mr ∈ M, J i+s−1
i ∈ As, i ∈ N; δJk

1 ,Ik
1

=
∏k

l=1 δjl,il is the

Kronecker symbol for Jk
1 , Ik

1 ∈ Ak, k ∈ N;
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are the frequency statistics; µJr+1
1

(Mr) = P{F(
X t+s−1

t ; Mr

)
= Jr

1 , xt+s = jr+1} is the

probability distribution of the (r + 1)-tuple; µ̂Jr+1
1

(Mr) = νJr+1
1

(Xn
1 ; Mr)/(n − s) is

the frequency estimator for the probability µJr+1
1

(Mr); the point instead of any index
means summation on all possible values of this index.

The consistent estimators for the parameters Q, M0
r [2] are
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1
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1
= µ̂Jr+1

1
(M0

r )/µ̂Jr
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0
r ), (3)

M̂r = arg minMr∈M Ĥ(Mr), (4)

where Ĥ(Mr) = −∑
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1
(Mr) ln
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)
.

The consistent estimators for the parameters s, r using the Bayesian Information
Criterion [2] are defined by the minimization:

BIC(ŝ, r̂) → mins−≤ ŝ≤s+, r−≤ r̂≤r+ , (5)

where BIC(s, r) = nĤ(M̂r)+(
∑

Jr
1∈Ar

|DJr
1
|−N r) ln n

2
, DJr

1
= {jr+1 ∈ A : µ̂Jr+1

1
(M̂r) > 0}.



Definition 2. The binary Markov chain of the s-th order with r partial connections
under additive distortions [3] is defined by the equation

yt = xt ⊕ ξt, t ∈ N, (6)

where xt ∈ A = {0, 1} is the nonobservable binary MC(s, r), ξt ∈ A is the nonob-
servable sequence of independent and identically distributed binary random variables,
P{ξt = 0} = 1−P{ξt = 1} = p > 0.5; {xt} and {ξt} are independent.

Introduce the notation: Y n
1 = (y1, y2, . . . , yn) ∈ An is the realization of the model (6)

of the length n > s; bKr+1
1

(Mr) = P{F(
Y t+s−1

t ; Mr

)
= Kr

1 , yt+s = kr+1} is the probabil-

ity distribution of the (r+1)-tuple for the model (6); b̃Kr+1
1

(Mr) = νKr+1
1

(Y n
1 ; Mr)/(n−s)

is the frequency estimator for the probability bKr+1
1

(Mr); w(·) is the Hamming weight.
Further, let us assume that the parameter p is known.

The consistent estimator for the probability µJr+1
1

(Mr), found by Y n
1 , [2] is
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By the “plug-in” approach the consistent estimators Q̃, M̃r, r̃, s̃ for the param-
eters Q, M0

r , r, s can be computed by the estimators µ̃Jr+1
1

(Mr), Jr+1
1 ∈ Ar+1, and

formulas (3)– (5).
For estimation of the nonobservable realization Xn

1 we use the Viterbi algorithm:
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where γJs+1
2

(t+1) = p
(

1−p
p

)kt+s⊕js+1

max
j1∈A

qF (Js
1 ;M0

r ),js+1
γJs

1
(t), γJs

1
(1) = ps

2s

(
1−p

p

)w(Js
1⊕Ks

1)
.

3 Estimation of the parameters of Geffe’s generator

The algorithm based on the model (6) for estimating the parameters of Geffe’s generator
by its output sequence consists of the following steps.

Step 1 is finding of the characteristic polynomials of LFSR1, LFSR2. The weakness
of Geffe’s generator comes from the fact [4] that the coincidence probability between
the output signal yt and the output bits x1

t equals to

P
{
yt = x1

t

}
= P

{
x3

t = 0
}

+ P
{
x3

t = 1
}

P
{
x2

t = x1
t

}
= 0.75. (8)

The coincidence probability between yt and x2
t can be estimated similarly. From equa-

tions (1), (8), we have the output signal of Geffe’s generator can be described by the
model (6) with the parameter p = 0.75. Thus, using the observable output sequence
of this generator and the estimators for the parameters of the model (6), we find the
characteristic polynomials of LFSR1, LFSR2.



Step 2 is recovery of the output bits of LFSR1, LFSR2. Since the characteristic poly-
nomials of LFSR1, LFSR2 are known, then the sequences {x1

t}, {x2
t} can be recovered

by the linear syndrome algorithm [4] or formula (7).
Step 3 is finding of the characteristic polynomial of LFSR3. Define

x̄3
t =

{
i, if x1

t 6= x2
t , yt = xi+1

t , i ∈ {0, 1},
ηt, if x1

t = x2
t , ηt ∈ {0, 1} is i.i.d. random variables, P{ηt = 0} = 1/2.

Since, as can be easily seen,

P
{
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= 1−P

{
x3
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t

}
= 1−P

{
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t

}
P

{
x3

t 6= ηt

}
= 0.75,

we have the sequence {x̄3
t} can be described by the model (6) with the parameter

p = 0.75. Thus, using the estimators for the parameters of the model (6), we find the
characteristic polynomial of LFSR3.

Step 4 is recovery of the output bits of LFSR3. Taking into account the sequence
{x̄3

t} and the knowledge of the characteristic polynomial for LFSR3, the sequence {x3
t}

can be fully recovered by the linear syndrome algorithm [4] or formula (7).
Thus, despite having high period and moderately high linear complexity, Geffe’s

generator succumbs to attack, as described above.
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