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Abstract

The Monte-Carlo Markov Chain (MCMC) method for estimation of skew
t-distribution is developed in the paper. Using the representation of the skew ¢-
distribution is represented by multivariate skew — normal distribution with covari-
ance matrix depending on parameter distributed according to inverse — gamma
distribution (Azzalini and Genton, 2008), the density of skew ¢-distribution is
expressed through multivariate integral. Next, the MCMC procedure is con-
structed for recurrent estimation of skew ¢-distribution by maximum likelihood,
where the Monte-Carlo sample size is regulated so that to ensure the convergence
and to decrease the total amount of Monte-Carlo trials. The confidence intervals
of Monte-Carlo estimators are introduced because the asymptotic distribution of
Monte-Carlo estimators is Gaussian according to the CLT and the termination
rule is implemented testing statistical hypotheses about insignificant change of
estimates in two steps of the procedure (Sakalauskas, 2000).

1 Introduction

During last time, a growing interest exists in the analysis of parametric classes of dis-
tributions that exhibit various shapes of skewness and kurtosis. To model departures
of such distribution from normality, a well-known approach consists of modifying the
probability density function of a random vector in a multiplicative fashion (Azzalini
and Genton, 2008). Multivariate skew ¢-distribution which is often applied to model the
non-Gaussian errors is constructed by this way, too. In general, the skew t-distribution
is represented by multivariate skew — normal distribution with covariance matrix de-
pending on parameter, distributed according to inverse-gamma distribution. According
to this representation, the density of skew ¢-distribution as well as likelihood function
are expressed through multivariate integrals that are convenient to estimate numeri-
cally by Monte-Carlo simulation. In this paper the maximum likelihood method for
estimation of parameters of multivariate skew t-distribution is developed using adaptive
Monte-Carlo Markov chains.

2 The Maximum Likelihood Estimation of Multi-
variate Skew t- Distribution

Denote the skew t-variable by ST (i, 3, ©). In general, a multivariate skew ¢-distribution
defines a random vector X, which is distributed as a multivariate Gaussian vector:

f(z,a,t, %) = (t/ﬂ')% . |Z|7§ i e—t.(x—a)T.zﬂ.(x—a)’ (1)



where vector of mean a is distributed as a multivariate Gaussian N (p, ©/2t) in half-
plane ¢ -w™ - (a — p) > 0, where w = diag(X), ¥ > 0, © > 0 are the full rank d x d
matrices, d-dimension, and a random variable ¢ follows from Gamma distribution.
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Assume for simplicity the parameter b to be fixed. By means of definition, the
d-dimensional skew t-distributed variable X has a density:
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Let a matrix of observations be given X = (X! X? .. X%) where X’ are an
independent vectors, distributed ST'(u, ¥, ©). We will examine the estimation of
parameters p, >, © by the maximum likelihood method. Thus, the log-likelihood
function is as follows: L(y, 2, 0) = — K In(p(X?, 1, 2,0)). The estimates /i, ¥, ©
of parameters of multivariate skew t-distribution (3) are found by taking and setting
equal to zero the first derivatives, and next solving the equations obtained by this way
subject to % > 0, © > 0. Derivatives of the likelihood function are expressed through
derivatives of the density function:
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Differentiation of the density function of a skew t-distribution (3), provides us:
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Denote a conditional density: f(a,t,u, %, Olzr.) = f(w’“’t’z)b{;“l’f’g’gg'fl(t)d“dt. Using

this definition the derivatives of likelihood function can be written in the form as:
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Let /l,fl > 0, © > 0 be the maximum likelihood estimates of parameters of
ST(u, %, 0). It is easy to see that now these estimates satisfy the equations:
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where conditional expectation are taken for i, >, ©.

3 Monte-Carlo Markov Chain

Let consider the EM — algorithm to solve the equations (4), (5), (6). The recurrent
EM relationships are as follows:
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where conditional expectations are computed for py, 3, O, po, 2o, O are some
initial approximation, £ = 0,1,2,.... The process terminated if estimates at two
current iterations differ insignificantly.

Since the integrals in expressions obtained can be calculated analytically only in
very simple cases, it is seen to apply the Monte-Carlo method. Parameters estimates
are now convenient to calculate by iterative method, starting from some initial values.

Say random variables and vectors be generated: B; ~ Gama(2), n; ~ N(0,0y), G; ~
e+ mn,ifq-wton; >0,and Gy ~ . —my, if g-w™tom; <0, 5=0,1,2,..., N¥; N¥
is the Monte-Carlo simple size at the k'* step. Then
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where the Monte-Carlo estimators are as follows:
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The Monte-Carlo chain can be terminated at the k™ step if pp1 ~ g, Spp1 ~
Yk, Opy1 ~ Of. Since estimators (11)—(14) are averages of large number of identically
distributed random variables, its distribution is approximated by law of large num-
bers and CLT. Thus, for testing of termination condition the statistical criteria about
equality of sampling mean and covariance matrices to given vector and matrices can
be used. The hypothesis about termination condition is rejected if
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where Z,, is quantile of Fisher distribution with p = d - (d + 3) degrees of freedom,
« is significance level. Besides, there is no reason to generate large samples at the
beginning of estimation when enough only to evaluate approximately the direction
leading to solution of equations (4)—(6). Large samples should be taken only at the
moment of the decision about termination of Monte-Carlo Markov chain. For this
purpose the next rule of sample size regulation is implemented: N**!' > Z; - Z—Z In
general case, @ may coincide with 5. As follows from (Sakalauskas, 2000) such a rule
guarantees the convergence of the procedure (10) to solution of equations (4)—(6).
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