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Abstract

Active learning refers to the settings in which a machine learning algorithm
(learner) is able to select data from which it learns, and by doing so aims to achieve
a better accuracy (e.g. by avoiding obtaining training data that is redundant or
unimportant). Active learning is particularly useful in cases where obtaining
training data is costly.

A common assumption is that an active learning algorithm is fully aware of the
details of an underlying learning algorithm for which it obtains the data. However,
in many real world settings, obtaining precise details of the learning algorithm
may not be feasible, making the underlying algorithm in essense a black box –
no knowledge of internal workings of the algorithm, where only the inputs and
corresponding outputs are acessible. We note that accuracy will improve only if
the learner’s outputs change. Motivated by this, we select a training point that
is expected to cause many changes in the learner’s outputs, in the anticipation
that the resulting changes will be for the better.

1 Introduction
The goal of supervised learning is to learn a function that allows to accurately predict
the output for previously unseen inputs. A function is learned from the training data,
consisting of inputs and outputs from the unknown target function. A popular phrase
in computer science ‘Garbage in, Garbage Out’ summarizes well the importance of the
training data in the learning process. Obtaining output values (labeling) often incurs
a cost (in terms of money, effort, time, availability, etc.). While the cost of obtaining
an output value may be the same, the degree to which a training point allows us to
approximate the function varies (Figure 1). The goal of active learning (AL) is to select
input points to label as to maximize the accuracy of the learned function. What makes
the AL task challenging is that we have to predict the improvement in the accuracy of
the learned function with regards to the input point before its output value is obtained.
Since once the output value is obtained it incurs a cost.

A common assumption is that an active learning algorithm is fully aware of the
details of an underlying learning algorithm for which it obtains the data. However, in
many real world settings obtaining precise details of the learning algorithm may not
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Figure 1: Utilizing training points selected by AL method (1c), allows to more ac-
curately predict the true values (1a), in comparison with selecting training points
randomly (1b) [2].

be feasible, e.g. learning algorithm could be very complex, consisting of many models
and modules that are developed independently. Even if model details are available,
developing active learning algorithms for complex models could be very difficult. In
addition, active learning criterion may need to be reformulated each time the underlying
model changes.

2 Problem Formulation
Supervised Learning Let us define the problem of active learning in a more for-
mal manner. An input variable is cosindered to be a multi-dimensional data point
and is denoted by a vector x ∈ Rp, where p is a number of attributes/features. The
set of all points is denoted by X . The target function that we are trying to approx-
imate is denoted by f , and its output value (also referred to as label) is denoted as
f(x) = y ∈ R. The set of training input points is denoted by X (Train), and these
points along with their corresponding output values are referred to as a training set,
i.e. T = {(xi, yi}xi∈X (Train) . The task of supervised learning is, given a training
set, to learn an estimate f̂ of the target function f by, the estimated output value
is denoted as ŷ = f̂(x). We measure how accurately the learned function predicts
the true output values by the generalization error estimated based on the test set:
G(f̂) =

∑
x∈X (Test) L

(
f(x), f̂(x)

)
P (x),where X (Test) refers to the test set, and predic-

tion errors are quantified by a loss function L.

Active Learning We consider that we are allowed to sequentially select which inputs
will be labeled. The active learning criterion aims to estimate the usefulness of labeling
an input x (and adding it to the training set T ). In our case usefulness is defined as
the minimization of generalization error with respect to the training set. The active
learning criterion could then be formulated as: Ĝ(x) = Ĝ(X (Train)∪{x}). For example,
if we consider labeling a point xj or a point xk, then we would estimate their usefulness
by an active learning criterion, i.e. Ĝ(xj) and Ĝ(xk), and select the one that will result
in a smaller generalization error. Note that we need to estimate the usefulness of
labeling the point without knowing its actual label. To distinguish a candidate point
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to be labled from the other points we refer to it as xδ. The goal of active learning can
then be stated as selecting an input point x to be labeld, so that after adding it to the
training set the the generalization error will be minimized: argminxĜ(x).

Black-box Settings In black-box settings the details of learned function f̂ are not
accessible, however its output estimates ŷ = f̂(x) are accessible.

3 Proposed Method
In out previous work [1], we have investigated the efficiency of the proposed criterion
when the underlying model was assumed to be known (a linear regression model in
our case). In this work, we consider black-box setttings, i.e. the underlying model
is unknown. Model-based approaches tend to aim at reducing the model error (i.e.
the error of model parameters), which is hoped would result in the improvement of
predictive error. However, in black-box settings no information about the undelying
model is assumed to be available. Therefore many of the traditional active learning
methods are not applicable in these settings. On the other hand, the output estimates
are easily accessible. Motivated by this we aim at developing an active learning that
utilizes the information contained within the output estimates.

Method The generalization error measures how well the estimated output values ap-
proximate the true output values. We note that in the calculation of the generalization
error, the true output values are not affected by the addition of the new training point,
while the estimates of the output values do change. Therefore, we propose to estimate
the effect of a new training point on the value of the generalization error in terms of
changes in the estimates of the output values.

First, let us reformulate the goal of minimizing the generalization error in terms
of the changes in its value that adding a training point causes. Let us denote the
generalization error when the number of training points is equal to t by Gt, the in-
dex of the next training point xδ by δ; and the generalization error after the out-
put value yδ is obtained by Gt+1. Let us express Gt+1 as Gt+1 = Gt − (Gt − Gt+1).
The value of Gt is fixed in advance (since we are considering a sequential scenario).
The value of Gt+1 depends on the choice of δ. In order for Gt+1 to be minimized
the difference between generalization errors Gt and Gt+1 needs to be maximized i.e.:
minδGt+1 = Gt−maxδ(Gt−Gt+1). So the original task of minimizing the generalization
error could be reformulated as maximizing the difference between the generalization
errors Gt and Gt+1 i.e.: argminδGt+1 = argmaxδ(Gt − Gt+1). Let us denote ŷt as
the estimates of output values when the number of training samples is equal to t;
and ŷt+1 as the estimates of output values after the value of yδ was obtained and
added to the training set. Let us rewrite the difference between generalization errors
Gt and Gt+1 (also referred to as 4G) in terms of a difference between ŷt and ŷt+1:
4G = Gt−Gt+1 = ‖ŷt − ŷt+1‖2 +2 〈ŷt+1 − ŷt, y − ŷt+1〉 . Let us denote the first term
by T1 = ‖ŷt − ŷt+1‖2, and the second term by T2 = 2 〈ŷt+1 − ŷt, y − ŷt+1〉. Note that
this decomposition is different from the standard bias-variance decomposition.
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The value of 4G could not be calculated directly since the true output values y are
not accessible. Estimating the value of term T2 relies on the estimate of all of the values
in y. In the current settings, the number of training samples is small, so the estimate
of y is likely to be unreliable. However, estimating the value of term T1 requires only
the estimate of a single value y∗δ , so the estimate of T1 is less likely to be error-prone
than the estimate of T2.
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Figure 2: ŷ after the training point δ is
added to the training set (making the num-
ber of training points equal to t+ 1).

Let us investigate if T1 alone is a good
predictor of 4G. Let us consider three
possible cases of the location of ŷt+1 (an
element of ŷt+1) in relation to the corre-
sponding elements ŷt and y, as illustrated
in Figure 2. In case (b), adding a training
point improves the estimate of the true
output value. In this case, maximizing T1 also maximizes 4G. In case (a), adding a
training point deteriorates the estimate of the true output value. In case (c), adding
a training point causes the estimate to overshoot the true output value. In both cases
(a) and (c) maximizing T1 does not maximize 4G. In [1], we have empirically shown
that case (b) is much more frequent than cases (a) and (c). Even when cases (a) and
(c) do occur, the probability of the output estimate significantly deteriorating is low.
T1 appeas to be a promossing AL criterion (Figure 3).

Figure 3: Emperical Evaluation. Most
importantly, high values of ‖ŷt − ŷt+1‖2
should correspond to high values of 4G,
since those are the points that will be cho-
sen.
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