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Abstract

In this paper, we make use of probability weighted moments of largest ob-
servations, in order to build classes of estimators of the extreme value index, the
primary parameter in statistics of extremes. Due to the specificity of the estima-
tors, we propose the use of bootstrap computer intensive methods for an adaptive
choice of the optimal number of order statistics to be used in the estimation. The
developed methodology is applied to a data set in the field of insurance.

1 Introduction and preliminaries
The extreme value index (EVI) is the parameter γ ∈ R in the general extreme value
(EV) distribution function (d.f.), EVγ(x) := exp(−(1 + γx)−1/γ), 1 + γx > 0. Let
Xn = (X1, . . . , Xn) denote a sample of size n from either independent, identically
distributed or even weakly dependent random variables and consider the associated
sample of ascending order statistics (o.s.’s) (X1:n ≤ · · · ≤ Xn:n). The EV d.f. appears
as the limiting d.f. of the maximum Xn:n, suitably linearly normalized, whenever a non-
degenerate limit exists. We then say that F is in the domain of attraction for maxima
of the EV d.f., and use the notation F ∈ DM(EVγ). We shall deal with heavy-tails, i.e.
a positive EVI. Then the right-tail function is of regular variation with an index −1/γ,
and with the notations U(t) := inf {x : F (x) ≥ 1− 1/t}, t ≥ 1, and RVα standing for
the class of regularly varying functions at infinity with an index of regular variation α,
F ∈ DM(EVγ)γ>0 ⇐⇒ F := 1− F ∈ RV−1/γ ⇐⇒ U ∈ RVγ.

One of the first classes of semi-parametric estimators of a positive EVI, considered
in [7], is given by

γ̂Hk,n :=
1

k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n} , k = 1, 2, . . . , n− 1. (1)

We shall also deal with the Pareto probability weighted moments (PPWM) EVI-
estimators, recently introduced in [1]. They are valid for heavy right-tails, compare
favourably with the Hill estimator, in (1), and are given by

γ̂PPWM
k,n := 1− â1(k)/

(
â0(k)− â1(k)

)
, (2)

with â0(k) := 1
k

∑k
i=1Xn−i+1:n and â1(k) := 1

k

∑k
i=1

i
k
Xn−i+1:n. Consistency of the EVI-

estimators in (1) and (2) is achieved in the whole DM(EVγ)γ≥0 provided that Xn−k:n
is an intermediate o.s., i.e., if k = kn →∞ and k/n→ 0, as n→∞.
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In order to derive the asymptotic normality of these EVI-estimators, it is of-
ten assumed the validity of a second-order condition either on F or on U , like
limt→∞

(
lnU(tx)− lnU(t)− γ lnx

)
/A(t) = (xρ − 1)/ρ, where ρ ≤ 0 is a second-order

parameter and |A| ∈ RVρ ([3]). If we assume the validity of such a second-order frame-

work, these EVI-estimators are asymptotically normal, provided that
√
kA(n/k)→ λ

A
,

finite, as n→∞. Indeed, if we denote γ̂•k,n, either the Hill or the PPWM estimator, we
have, with Z•k asymptotically standard normal and for adequate (b•, σ•) ∈ (R, R+),
the validity of the asymptotic distributional representation

γ̂•k,n
d
= γ + σ•Z

•
k/
√
k + b• A(n/k)(1 + op(1)), as n→∞. (3)

In this article, after a review, in Section 2, of the role of the bootstrap methodology
in the estimation of optimal sample fractions, we provide an algorithm for the adap-
tive estimation through the PPWM EVI-estimators, also valid for Hill estimators. In
Section 3, we apply such a data-driven estimation to a data set in the field of insurance.

2 The bootstrap methodology and optimal levels
Under the above mentioned second-order framework, but with ρ < 0, let us use the pa-
rameterization A(t) = γβtρ, where β and ρ are generalized scale and shape second-order
parameters. Given the EVI-estimator, γ̂•k,n, let us denote kγ̂

•

0 (n) := arg mink MSE(γ̂•k,n),
with MSE standing for mean squared error. With E denoting the mean value opera-
tor and AMSE standing for asymptotic mean squared error, a possible substitute for

MSE(γ̂•k,n) is AMSE(γ̂•k,n) := E
(
σ• Zk/

√
k+ b•A(n/k)

)2
= σ2

•/k+ b2• γ
2 β2 (n/k)2ρ, cf.

equation (3). Then, with the notation k0|γ̂•(n) := arg mink AMSE
(
γ̂•k,n
)
, we get

k0|γ̂•(n) =
(
(−2ρ) b2• γ

2β2 n2ρ/σ2
•
)−1/(1−2ρ)

= kγ̂
•

0 (n)(1 + o(1)). (4)

For the Hill estimator, we have, in (3), (b
H
, σ

H
) = (1/(1 − ρ), γ). Consequently, with

(β̂, ρ̂) a consistent estimator of (β, ρ) and [x] denoting the integer part of x, (4) justifies
asymptotically the estimator k̂H0 := [((1− ρ̂)2n−2ρ̂/(−2ρ̂β̂2))1/(1−2ρ̂)]. The same does
not happen with the PPWM EVI-estimators, due to the fact that σ

PPWM
and b

PPWM

depend both on γ. In this situation, it is sensible to use the bootstrap methodology
for the adaptive PPWM EVI-estimation. Similarly to [6] and [5], let us consider the
auxiliary statistic, T •k,n := γ̂•[k/2],n − γ̂•k,n, k = 2, . . . , n − 1. On the basis of results

similar to the ones in [6], we get the asymptotic distributional representation, T •k,n =d

σ• Q
•
k/
√
k+b• (2ρ−1) A(n/k)+op(A(n/k)), with Q•k asymptotically standard normal,

and (b•, σ•) given in (3). The AMSE of T •k,n is thus minimal at a level k0|T •(n) such

that
√
k A(n/k)→ λ′

A
6= 0, of the type of the one in (4), with b• replaced by b•(2

ρ−1).

We consequently have k0|γ̂•(n) = k0|T •(n) (1− 2ρ)
1

1−2ρ (1 + o(1)). Given the random
sample Xn, consider for any n1 = O(n1−ε), 0 < ε < 1, the bootstrap sample X∗n1

=
(X∗1 , . . . , X

∗
n1

), from F ∗n(x) = 1
n

∑n
i=1 I{Xi≤x}, the empirical d.f. associated with Xn,

and associate to that bootstrap sample the corresponding bootstrap auxiliary statistic,
T ∗k1,n1

. Then, with the obvious notation k∗0|T (n1) = arg mink1 AMSE
(
T ∗k1,n1

)
, with k̂∗0|T
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denoting the sample counterpart of k∗0|T , and taking into account (4), we can build the
k0-estimate,

k̂•0∗ ≡ k̂•0∗(n;n1) := min
(
n− 1,

[(
1− 2ρ̂

) 1
1−2ρ̂
(
k̂∗0|T (n1)

)2
/k̂∗0|T ([n2

1/n] + 1)
]

+ 1
)
. (5)

2.1 An algorithm for the adaptive EVI-estimation
Now, with γ̂PPWM

k,n defined in (2), the algorithm is the following:

1. Given a sample (x1, x2, . . . , xn), compute γ̂PPWM
k,n , k = 1, 2, . . . , n − 1, and plot,

for tuning parameters τ = 0 and τ = 1, the observed values of ρ̂τ (k) introduced
and studied in [2].

2. Consider {ρ̂τ (k)}k∈K, with K = ([n0.995], [n0.999]), compute their median, denoted

ητ , and compute Iτ :=
∑

k∈K (ρ̂τ (k)− ητ )2, τ = 0, 1. Next choose the tuning
parameter τ ∗ = 0 if I0 ≤ I1; otherwise, choose τ ∗ = 1.

3. Work with the second-order parameters’ estimates ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1) and β̂ ≡
β̂τ∗ := β̂ρ̂τ∗ (k1), k1 = [n0.999] and β̂ρ̂(k) given in [4].

4. Next, consider a sub-sample size n1 = o(n), and n2 = [n2
1/n] + 1.

5. For l from 1 until B, generate independently B bootstrap samples (x∗1, . . . , x
∗
n2

)
and (x∗1, . . . , x

∗
n2
, x∗n2+1, . . . , x

∗
n1

), from the empirical d.f. F ∗n(x) = 1
n

∑n
i=1 I{Xi≤x}

associated with the observed sample (x1, . . . , xn).

6. Denoting T ∗k,n the bootstrap counterpart of T PPWM
k,n , obtain (t∗k,n1,l

, t∗k,n2,l
),

1 ≤ l ≤ B, the observed values of the statistic T ∗k,ni , i = 1, 2. For k =

2, . . . , ni − 1, compute MSE∗(ni, k) = 1
B

∑B
l=1

(
t∗k,ni,l

)2
, and obtain k̂∗0|T (ni) :=

arg min1<k<ni MSE∗(ni, k), i = 1, 2.

7. Compute the threshold estimate k̂0∗ ≡ k̂PPWM
0∗ , already defined in (5).

8. Obtain PPWM∗ ≡ γ̂PPWM
∗ ≡ γ̂PPWM

∗ (n;n1) := γ̂k̂0∗,n.

A similar procedure can be used for the bootstrap data-driven estimation through the
Hill estimator, in (1). Note also that bootstrap confidence intervals are easily associated
with the bootstrap EVI-estimates, through the replication of this algorithm r times.

3 A case study in the field of insurance
We shall next consider an illustration of the performance of the adaptive PPWM EVI-
estimates under study, comparatively with the same methodology applied to the Hill
EVI-estimates, again through the analysis of n = 371 automobile claim amounts ex-
ceeding 1,200,000 Euro over the period 1988-2001, gathered from several European
insurance companies co-operating with the same re-insurer, Secura Belgian Re (see
[5], and references therein). The algorithm in Section 2.1 led us to ρ̂0 = −0.74 and
β̂0 = 0.80. For a sub-sample size n1 = [n0.955] = 284, and B = 250 bootstrap gener-
ations, we were led to k̂PPWM

0∗ = 58 and to PPWM∗ = 0.272. This same algorithm
applied to the Hill estimates leads us to k̂H0∗ = 52 and to H∗ = 0.299.

In Figure 1, as a function of the sub-sample size n1, ranging from n1 = [n0.95] = 275
until n1 = [n0.9999] = 370, we picture, at the left, the estimates of the optimal sample
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fraction (OSF), k•0/n, for the adaptive bootstrap estimation of γ through the Hill
and the PPWM estimators, in (1) and (2), respectively. Associated bootstrap EVI-
estimates are pictured at the right.
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Figure 1: Estimates of the OSF’s k̂•0/n (left) and the bootstrap adaptive extreme value index estimates γ̂•∗ (right),
as functions of the sub-sample size n1, for the SECURA data.

Contrarily to the bootstrap Hill, the bootstrap PPWM EVI-estimates are quite
stable as a function of the sub-sample size n1 (see Figure 1, right).

The running of the above mentioned algorithm r = 100 times, for n1 = [n0.955],
provided, for the PPWM estimates, a median value 0.2726, an average 0.2725, and
a 95% bootstrap confidence interval for γ given by (0.2715, 0.2728). The equivalent
indicators for the bootstrap Hill estimates were 0.2969, 0.2949 and (0.2826, 0.3133).
The size of the confidence intervals are in favour of the PPWM estimation. As already
detected in previous papers, and in the most diversified comparisons, the Hill estimates
are clearly over-estimating the true value of the EVI, and should be used with care.
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