TOOLS OF AN INFORMATION DATABASE
CREATION ON A SIMULATION EXPERIMENT
PERFORMANCE BY MICIC4 ENGINE

V.D. L1IAUCHUK, A.A. LIAUCHUK, U.U. STARCHANKA,
P.L. CHECHAT, S.F. MASLOVICH, A.S. POMAZ
Gomel State University named by Francysk Skaryna

Gomel, BELARUS
e-mail: 1v@gsu.unibel.by

Abstract
Original approach to the information database creation on simulation experi-

ment performance used in the simulation engine MICIC4 designed by authors is
considered.

1 Introduction

Making the information database on simulation experiment performance is an impor-
tant stage of the simulation project implementation. Standard statistics is used in
many simulators because of a method-oriented scheme formalization. For instance in
simulators of a transaction type these are usage factors, queues lengths, service times
and so on. The report on the experiment is also standardized and usually contains an
unnecessary information. The researcher is required to interpret the standard statis-
tics in notions of a problem branch, as well as to use an external software for the
transformation of the standard report to suitable type for analysis.

Another approach to the information database creation on simulation experiment
performance is used in the simulation system MICIC4 designed by authors Liauchuk
(2006). It is founded on the following principles:

e the developer must form contents of the information database in terms of a prob-
lem branch;

e the researcher must get only interesting in simulation experiment information i.e.
processor time must be not spent on calculation unnecessary characteristics;

e the researcher can get the report in the standard or unique form;

e the information database in the run is intended basically for the simulation model
verification, but as a whole on experiment for the decision tactical and strategic
problems.

e it is important in run to fasten the numeric attributes of the state to activities,
in which the state is changed.

The realization these principles in the simulation model program on MICIC4 is
considered below.

150



2 Arrays of statistical objects

In the narrow sense MICIC4 is a C++ library for a creation of a simulation model
program and an implementation of simulation experiments with it. Therefore the
solution of the above problem is to present an appropriate set of classes allowing to a
model developer to use their interfaces by effective way. Let us consider these classes.

Varied input variables in the theory of an experiment designing are called factors.
Corresponding class Factor is intended for variation of factors values on several levels.
Besides, given class allows to present automatically factors values in report, created
on results of the experiment realization. This class has no constructors. The ele-
ments of the factors array are initialized through the method createFactor of the class
Experiment | intended for a simulation experiment implementation.

The output variables of an experiment are called responses. Unlike many simulation
systems a set of responses in MICIC4 is not fixed. It is formed by the developer
of a simulation model. An automation of a calculation of responses and their print
in the report is provided through the notion statistics. Statistics is an ensemble of
responses, calculated on one and the same expression, but differing by conditions of
the calculation. For instance, whole amount of served transactions of all types, an
amount of served transactions of each type, an amount of served transactions with the
service time smaller than given one and so on - different responses, belonging to the
same statistics. MICIC4 provides the automatic renovation of all responses, belonging
to one statistics through calling the method add of the class Stat .

Thereby, a statistics can be considered as the server for elementary responses. In
a model program it is needed to ensure one-to-one correspondence between arrays of
statistics and responses. It is realized by an enumeration of statistics identifiers to be
described originally. Then the array of statistics Stats is defined in the same order as
an enumeration of statistics identifiers. Array elements are initialized by the call of
constructor of the class Stat .

In MICIC4 responses are divided into five types: in discrete time, in continuous
time, additive, final, resulting. Standard classes correspond to first four types. A
developer must create inherited classes for resulting responses from the base class Re-
sponse . Regardless of type all responses are collected in one array of the pointers
Responses . For efficiency of a simulation experiment implementation the given ar-
ray is automatically ordered by an enumeration of statistics identifiers. The responses
can be brought in the array in free order. Since a renovation of responses is realized
through an interface of the class Stat it is enough to insert in array Responses only
that responses to be required for concrete simulation experiment. The code of model
activities remains unchangeable.

Constructor of the class Stat is the following: Stat(char *name, int num_ dec=2,
int num_ pos=10) . Its arguments are intended for presenting in standard report on a
simulation experiment implementation.

The only method of the class Stat is the following: woid add(float value) . Tt
updates all responses, falling into statistics and satisfying given condition, adding the
value value in calculated expression of the response.

151



Constructors of responses classes are the following:

Response(float sum=0.0) . It is a constructor of the base class, where sum is an
initial value of the response (as in other constructors). The given constructor is
necessary to use for the creation resulting responses.

DiscreteResponse(float sum=0.0, long num=0) . Creates a response in discrete
time, where num is an amount of measurements of the response.

ContinuousResponse(float sum=0.0, float prev_time=0.0, float sum_ time=0.0).
Creates a response in continuous time, where prev_ time is the time of the previous
change of the response, sum_ time is the general time of the measurement of the
response.

AdditiveResponse(float sum=0.0) . Creates an additive response.

FinalResponse(float sum=0.0) . Creates a final response.

Methods of responses classes are to be overridden only for resulting responses. They
are the following:

virtual void add(float ) . Adds in the calculated expression of the response the
value z .

virtual float mean(void) . Returns the (average) value of a response in the run
for the current moment of a model time.

virtual void reset(void) . Restores an initial value of the response.

virtual int condition(void) . Returns a nonzero value if a condition of a response
calculation is fulfilled.

The following set of functions is used for an array Responses performance:

NewRsp(idStat) . Reserves the index in array Responses for a response from
the statistics with a number idStat . It returns the pointer on free element in
responses array.

int Rsp(int stat_num, int local=0) . Returns the index of the response from
the statistics stat num with relative number local in the array Responses . The
function on the information from the array Stats converts a relative number into
an absolute index.

int RspNumber(int stat_num) . Returns the amount of responses in the statistics
with number stat num .

void FreeResponses(void) . Cleans the array Responses , allowing to implement
the following simulation experiment with the new set of responses.

void ResetResponses(void) . Restores initial values of all response. It is used at
termination of a transition period in a simulation model on the event occurrence.

152



3 Array of traces

The trace is intended for the verification of a simulation model. It is a text file, in which
the simulator manage program adds a record after completion of each activity. It is
created automatically if macro DEBUG is defined in header file of a system module
micic4.h.

The array of traces Traces contains an information about elementary data of a
simulation model state to output in the trace file. One part of data is accumulated
automatically by simulator and the other one I by a developer of a simulation model
by means of corresponding functional calls. The simulator manage program always
outputs in trace:

e an activity name, model time of its initialization,

e name of the static element, its version number and the number in the array of
static elements, an amount of occupied channels on device before an activity call,

e a transactions name and its number in the array of transactions, an amount of
occupied channels by transactions,

e a pointer of the direction of a transaction motion after an activity performing.

e interacting device and transaction priorities,

a transaction state at the beginning and on the termination of an activity.

An interface of the class Trace is used for including in the trace unique data. Con-
structor of the class Trace is the following: Trace(char *header) . Its argument header
is a name of some characteristic added in the trace. A set of functions void FillTrace-
Type(char *header, type value) allows to save the value of the trace element with the
name name in the trace. As it was noted above an immediate record into the trace file
is fulfilled on an activity termination.

4 Conclusions

Thus, the researcher of a simulation model designs an information database of an
experiment performance accordingly to the problem branch tasks. Further processing
and analysis of collected data is realized in the environment of the most suitable for
the researcher statistical software.

References

[1] Liauchuk V.D., Maximey I.V. (2006). Program Technological Engines of Complex
Discrete Systems Simulation. Gomel State University, Gomel (in Russian).

153



