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Abstract

The goal of this paper is to declare results of the asymptotic behavior of the
summarized square error of the kernel distribution function estimator Fn(x) de-
fined by SUm =

∑m
j = 1(Fn(xj)−F (xj))2, where F (x) is the unknown distribution

function of a random variable X, ω(x) is the weight function in dose-response
dependence on the sample U (n) = {(Wi, Yi), 1 ≤ i ≤ n}, Wi = I(Xi < Ui) is the
indicator of even (Xi < Ui) and Y is a random variable, statistically dependant
by U . We apply this result to test goodness-of-fit of the distribution function
F (x).

1 Introduction
Let {(Xi, Yi, Ui), 1 ≤ i ≤ n} be a random sample with a distribution function

F (x)G(y, u) and density f(x)g(y, u) on R3, where {Xi} and {Yi, Ui} are independent
distributed random variables. We see a sample U (n) = {(Wi, Yi), 1 ≤ i ≤ n}, where
Wi = I(Xi < Ui) is indicator of event (Xi < Ui). The most nonparametric U (n)-sample
estimation of may be written in the form (see [1, 2, 3]).

Fn(x) =
S2n(x)

S1n(x)
, (1)

S1n(x) =
1

n

n∑
i =1

Kh(Yi − x), S2n(x) =
1

n

n∑
i =1

WiKh(Yi − x),

and K(.) ≥ 0 is a kernel function, h > 0 is a sequence of constants converging to zero
as n → ∞ and Kh(x) = (1/h)K(x/h).

In [2] the variable U is treated as inserted for organism dose and X is treated as
minimal working dose. Unlike the paper [4] we consider the case, when U is measured
as random variable, Y is charactetistic metering error of U .

Define ‖K ‖2 =
∫

K2(x) dx, ν2 −
∫

x2K(x) dx, R(x) =
∫

F (u)g(|x) dx, m(y) =∫
F (u)g(y, u) du, q(y) =

∫
g(y, u) du > 0, g(u) =

∫
g(y, u) dy > 0 and

g(u|y) =
g(y, u)

q(y)
, q(y|u) =

g(y, u)

g(u)
,
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are apparent densities of conformable distributions. And so R(x) = m(x)q(x).
Use the following conditions (K ).

(K1) K(x) ≥ 0 is a bounded even function on R1 and ‖K ‖2 < ∞.
(K2)

∫
K(x) dx = 1, ν2 =

∫
x2K(x) dx < ∞, d4 =

∫
x4K(x) dx < ∞.

(K3)
∫

xkK(x) dx, k = 1, 3.
(K4) K(x) = 0 for x /∈ [−1, 1].
(K5) h = h(n) is satisfying h → 0, nh → ∞ as n → ∞.
(K6) f ′(x) is a continuous function,

∫
(f ′(x))2 dx < ∞ and is a bounded function on

R.
(K7) f(x)/F (x), f ′f(x)/F (x) are bounded integrand and

∫
(f ′(x))4 dx < ∞.

Use the following conditions (A).
(A1) g(y, u) has got 2nd derivatives, which are bounded and continuous function on
R2.
(A2) g(y, u) has got 3rd derivatives, which are bounded on R2.

It is known (see [2]), that on conditions (K ) S1n(x)
d−→

n→∞
q(x) and S2n(x)

d−→
n→∞

m(x).
Moreover we have the following results.

Theorem 1 [3] . Under the conditions (K), (A) and h = Mn−1/5, than
√

nh(Fn(x) − R(x))
d−→

n→∞
N(a(x), σ2(x)),

where a(x) = M5/2 m′′(x)q(x) − q′′(x)m(x)

q2(x)
and σ2(x) =

ν2R(x)(1 − R(x))

q(x)
.

The most widely accept measure of the global performance of Fn(x) is their inte-
grated square error

∫
(Fn(x)−F (x))2 dx (see [6]). Here we are considering the summa-

rized square error in indicated points xj , which are chosen conventionally:

SUm =
m∑

j = 1

(Fn(xj) − F (xj))
2. (2)

The goal of this paper is to consider the asymptotic behavior of the statistic SUm.

2 The results
For this purpose we ascertain the asymptotic normality of the multivariate random

variable (Fn(x1), Fn(x2), . . . , Fn(xm)).

Theorem 2. Under the conditions (K ) and (A),
( i ) if nh5 → ∞, than

√
nh(Fn(x1)−F (x1), Fn(x2)−F (x2), . . . , Fn(xm)−F (xm)) is

weakly convergent to the normal vector (Z1, Z2, . . . , Zm)) of zero means, cov(Zi, Zj) =
−(1/2)a(xi)a(xj), i �= j, and the variances D(Zj) = σ2(xj).

( ii ) if nh5 → 0, than h2(Fn(x1) − F (x1), Fn(x2) − F (x2), . . . , Fn(xm) − F (xm)) is
weakly convergent to the normal vector (Z1, Z2, . . . , Zm)) of zero means, zero covaria-
tions and the variances D(Zj) = σ2(xj).
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( iii ) if nh5 → M ∈ (0,∞), than n−2/5(Fn(x1)−F (x1), Fn(x2)−F (x2), . . . , Fn(xm)−
F (xm)) is weakly convergent to the normal vector (Z1, Z2, . . . , Zm)) of zero means,
covariations cov(Zi, Zj) = −(1/2)a(xi)a(xj), i �= j, and the variances D(Zj) =
σ2(xj).

Define the following matrixes:

D =

⎛⎜⎜⎝
σ2(x1) −(1/2)a(x1)a(x2) ... −(1/2)a(x1)a(x2)

−(1/2)a(x2)a(x1) σ2(x1) ... −(1/2)a(x2)a(xm)
. . ... .

−(1/2)a(xm)a(x1) −(1/2)a(xm)a(x2) ... σ2(xm)

⎞⎟⎟⎠
and

A =

⎛⎜⎜⎝
σ2(x1) 0 ... 0

0 σ2(x1) ... 0
. . ... .
0 0 ... σ2(xm)

⎞⎟⎟⎠ .

The following theorem reveals the asymptotic behavior of the statistic
SUm =

∑m
j =1(Fn(xj) − F (xj))

2.

Theorem 3. Under the conditions (K ) and (A),

( i ) if nh5 → ∞, than
√

nh SUm is weakly convergent to the random variable with
the density

ψ(y) =
mym−1

√
det D

2m/2Γ(1 + m/2)
exp(−(1/2)ξTDξ);

( ii ) if nh5 → ∞, than h2 SUm is weakly convergent to the random variable with
the density

ψ(y) =
mym−1

√
det A

2m/2Γ(1 + m/2)
exp(−(1/2)ξTAξ);

( iii ) if nh5 → ∞, than n−2/5 SUm is weakly convergent to the random variable
with the density

ψ(y) =
mym−1

√
det D

2m/2Γ(1 + m/2)
exp(−(1/2)ξTDξ);

where components of the vector ξ = (ξ1, ξ2, . . . , ξm) are defined from the condition of
standardization and

∑m
k =1 ξ2

k = y.

These results we use for computer testing of statistical homogeneity and goodness
of fit hypothesis in this problem.
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