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Abstract

The goal of this paper is to declare results of the asymptotic behavior of the
summarized square error of the kernel distribution function estimator F,(z) de-
fined by SU,, = 71 | (Fu(y) —F(z;))?, where F(z) is the unknown distribution
function of a random variable X w(x) is the weight function in dose-response
dependence on the sample U™ = {(W;,Y;),1 <i < n}, W; = I[(X; < U;) is the
indicator of even (X; < U;) and Y is a random variable, statistically dependant
by U. We apply this result to test goodness-of-fit of the distribution function

1 Introduction

Let {(X;,Y;,U;),1 < i < n} be a random sample with a distribution function
F(2)G(y,u) and density f(z)g(y,u) on R? where {X;} and {Y;, U;} are independent
distributed random variables. We see a sample U = {(W;,Y;),1 < i < n}, where
W; = I(X; < Uj) is indicator of event (X; < U;). The most nonparametric ¢(™-sample
estimation of may be written in the form (see [1, 2, 3]).

Fn<w>=§iZ§i§» w
Sin(x Z Kn(Yi — ), Sou(r) = %iWiKh(Yi — ),

171 =1
and K(.) > 0 is a kernel function, h > 0 is a sequence of constants converging to zero
asn — oo and Kj(z) = (1/h)K(x/h).

In [2] the variable U is treated as inserted for organism dose and X is treated as
minimal working dose. Unlike the paper [4] we consider the case, when U is measured
as random variable, Y is Charactetistic metering error of U

Deﬁne ||KH2 fK2 )dx, v? fac2K dz, R(z) = [ F(uw)g(|z)dz, m(y) =
[ F(u) w) du, q(y) = [ g(y,u)du>0, g(u fgy, dy>0and

9y, u) .y = 9
g(uly) = W) q(y|u) o (@)
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are apparent densities of conformable distributions. And so R(z) = m(x)q(x).
Use the following conditions (K).

(K1) K(x) > 0is a bounded even function on R' and || K ||? < oc.
(K2) [K(z)de=1,12= [2?K(2)dr < o0, d* = [2*K(z)dr < cc.
(K3) [a2FK(z)dz,k=1,3.
(K4) K(z)=0forz ¢ [-1,1].
(K5) h = h(n) is satisfying h — 0,nh — o0 as n — oc.
(K6) f'(z) is a continuous function, [(f’(z))?dz < oo and is a bounded function on
R.
(K7) f(z)/F(x), f'f(x)/F(x) are bounded integrand and [(f’(z))*dx < cc.
Use the following conditions (A).
(A1) g¢(y,u) has got 2nd derivatives, which are bounded and continuous function on
R?

1
(A2) g(y,u) has got 3rd derivatives, which are bounded on R,

It is known (see [2]), that on conditions (K) Sy, (z) -, (x) and Sy, () N m(z).
Moreover we have the following results.

Theorem 1 [3] . Under the conditions (K), (A) and h = Mn~='/> than

Vih(Fy () = R(x)) == Nl(a(x),0%(x)),
e @)~ @mis) L PRE)0 - Rls)
q*(x) q(x)
The most widely accept measure of the global performance of F,(z) is their inte-

grated square error [(F,(z) — F(z))*dx (see [6]). Here we are considering the summa-
rized square error in indicated points x;, which are chosen conventionally:

where a(x)

m

SUm =Y (Fulz;) = F()))*. (2)

i=1

The goal of this paper is to consider the asymptotic behavior of the statistic SU,,.

2 The results

For this purpose we ascertain the asymptotic normality of the multivariate random
variable (F,(x1), Fn(z2), ..., Fo(xm)).

Theorem 2. Under the conditions (K) and (A),

(1) if nh® — oo, than V/nh(F,(z1) — F(x1), F(x2) — F(x3), ..., Fo(zm) — F(zm)) is
weakly convergent to the normal vector (Zy, Za, . .., Zy,)) of zero means, cov(Z;, Z;) =
—(1/2)a(z;)al(x;),i # j, and the variances D(Z;) = o(x;).

(il ) if nh® — 0, than h3(F,(z1) — F(z1), Fu(z2) — F(23), ..., Fo(2,) — F(2,)) is
weakly convergent to the normal vector (Zy,Za, ..., Zm)) of zero means, zero covaria-
tions and the variances D(Z;) = o*(z;).
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(iii ) if nh® — M € (0, 00), than n~2/°(F,(21)—F(x1), F,(22)—F(23), . .., Fp(zm)—

F(x,,)) is weakly convergent to the normal vector (Zy,Zs,...,Zy)) of zero means,
covariations cov(Z;, Z;) = —(1/2)a(z;)a(x;),i # j, and the variances D(Z;) =
o*(z;).
Define the following matrixes:
o%(z1) —(1/2)a(zy)a(za) ... —(1/2)a(xq)a(xs)
D —(1/2)a(zz)a(zy) (1) o —(1/2)a(z2)a(zy)
—(1/2)a(zm)a(xy) —(1/2)a(zm)a(zs) ... o%(xm)
and
0'2(.73'1) 0 0
A — 0 0'2(.%'1) 0
0 0 o 0% (z)

The following theorem reveals the asymptotic behavior of the statistic
SUnm = Z?:1(Fn(xj) — F(x))%
Theorem 3. Under the conditions (K) and (A),

(1) if nh® — oo, than V/nh SU,, is weakly convergent to the random variable with

the density
m—1 det D
V) = ol ) P (/2 D)

(ii ) of nh® — oo, than h? SU,, is weakly convergent to the random variable with

the density
~ omy™'Vdet A
©2m/2D(1 4 m/2)

(iii ) if nh® — oo, than n=2/° SU,, is weakly convergent to the random variable

with the density
bly) = my™ v/ det D
Y= 9mPT (1 + m)2)

where components of the vector £ = (&1,&s,...,&n) are defined from the condition of
standardization and ;" & = y.

U(y) exp(—(1/2)" Ag);

exp(—(1/2)¢" D¢);

These results we use for computer testing of statistical homogeneity and goodness
of fit hypothesis in this problem.
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