
COMPLEXITY METRICS AND EXPLORATORY

ANALYSIS OF DNA SEQUENCES

T. Rekašius
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Abstract

A new measure of the distance between nucleotide sequences and the efficient
method for visualisation of nucleotide sequences have been proposed. It facili-
tates visualisation of a long DNA sequence via a compact and smooth picture of
all oligonucleotides of length up to 10 in the sequence.

1 Introduction

Let’s define the fixed length sequence x of n symbols as follows:

x = x1x2, . . . , xn, xl ∈ A, l = 1, n, (1)

where A is a finite set (alphabet). DNA sequences consists of four nucleotides briefly
called A, C, G, T, therefore for DNA sequences A = {A,C,G,T}. Let us identify them
with vertices of a square with coordinates (0, 0), (1, 1), (0, 1), and (1, 0), respectively.
Thus, we have a natural isomorphism ν : {A,C,G,T} → A × A, A = {0, 1}, where

{ν(A), ν(C), ν(G), ν(T)} = {(0, 0), (1, 1), (0, 1), (1, 0)}. (2)

Chaos game representation (CGR) of DNA algorithm: a) recode DNA sequence into
two binary sequences of the same length (2) and identify each of them with a frac-
tional dyadic number, b) sequentially multiply these two numbers by 2 and take their
fractional parts as a new pair of numbers, c) plot the pairs obtained on the graph.
Resulting picture is called CGR ”genome signature” (fig. 1).

”Genome signature” is an efficient way to picture long nucleotide sequences [2], but
it has several undesirable features, and one of them is their fractality. For example
the difference between dyadic representation in the interval [0,1) of two sequences
10000000000 and 01111111111 is less than 2−10 whereas the difference for ”similar”
sequences 00000000001 and 11111111110 is greater than 1 − 2−9. Due to the fractal
character of DNA signatures the easily comprehensible Euclidean distance does not
represent genetical similarity (dissimilarity) of oligonucleotides appropriately and hence
the differences between them are difficult to interpret. To make ”genome signature” to
be appropriate for DNA visualisation the ”natural” identification of nucleotide sequence
with a (dyadic) point in the unit square should be replaced by a more subtle mapping.
This mapping must be continuous in the sense that (genetically) ”close” nucleotide
sequences are represented by close points in the square and vice versa.
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Figure 1: CGR genome signature. Bacteria Helicobacter pylori J99

In bioinformatics, different genetic sequences are being compared rather fre-
quently [4]. Relationship of two organisms, when comparing their DNA, also gets
to the calculation of the distance between two genomes. With such distances between
the species known, phylogenetic trees could be (re)constructed, or the origin of species
could be analysed.

Any finite sequence with elements from a finite alphabet can be identified with a
rational number from the interval [0,1). In turn, any sequence of real numbers no
matter how long it may be and any vector of a very large dimension can be treated as
a function, i.e., merely as a point in a functional space. This is the paradigm of the
functional data analysis [3]. In this work we attempt to apply this approach to genetic
(nucleotide) sequence visualisation and analysis.

2 Distance between binary sequences

The distance proposed below is based on a operator of ”differentiation” [1]. In some
sense it is a discrete analog of Sobolev norm which is well known in the functional
analysis. Assume that the sequence x defined in (1) is binary, i.e. A = {0, 1}. In the
sequel x is identified with the corresponding vector in the space Rn. The difference
(”differentiation”) operator B is defined in the following way. Let:

Mn
B(n)

1→ Mn−1
B(n−1)

1→ Mn−2
B(n−2)

1→ . . .
B(3)

1→ M2
B(2)

1→ M1, Mi ⊂ Ri, i = 1, n. (3)

Here the operator B(k)
1 , k ∈ {2, . . . , n} is expressed by the formula

B(k)
1 x = {(xi+1 − xi)/2, i = 1, k − 1}, (4)

and the operators B(n)
l : Mn → Mn−l are obtained recurrently from the formula

B(n)
l = B(n−l+1)

1 B(n)
l−1, l = 2, n− 1. (5)

The upper index n of the operator B(n)
l indicates the dimension of the space it acts

in, while the lower index l shows the extent to which the dimension of its mapping is
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smaller. For a given x ∈ Mn ⊂ Rn, coordinates of the corresponding point y = Bx in
the space Rn(n+1)/2 are expressed by the formula

y = y(x) = Bx = (x, B(n)
1 x, B(n)

2 x, . . . ,B(n)
n−1x). (6)

Let a positive defined diagonal matrix W = {w1, . . . , wq} of the order q = n(n + 1)/2
be given. Define the weighted inner product in Rq by the equality

(u, v)W := u	Wv =

q∑
i=1

wiuivi (7)

and set |u|W =
√

(u, u)W . The distance d = dW between two binary sequences x and
z is defined as

d(x, z) = |y(x) − y(z)|W , x, z ∈ Mn, y(x), y(z) ∈ M ⊂ Rq. (8)

Define the cyclic shift operator T : Mn → Mn by the equality

T (x) = xnx1 . . . xn−1, x ∈ Mn. (9)

For a given positive sequence ρ0, . . . , ρn−1 define average (smoothed) distance

dρ(x, z) =
n−1∑
j=0

ρj ·
(
T j(x), T j(z)

)
. (10)

Given a matrix D = {d(x, z)} or matrix Dρ = {dρ(x, z)}, ∀x, z ∈ Mn consisting of
the pairwise dissimilarities of the sequences x (in the space Rq) the goal is to reduce
the dimensionality q of the data set to a sufficiently small value so that the distances
between the sequences x in the low dimension space would be as close to the original
distances as possible. It is a classical problem of multidimensional scaling. To solve
it, here we apply SAS procedure MDS. Results for n = 5 long binary sequences x are
presented in table 1.

Table 1: One-dimensional projections ϕ(x) of n = 5 long sequences x. Distance d(x, z)

No x ϕ(x) No x ϕ(x) No x ϕ(x) No x ϕ(x)
1 10101 0.0000 9 10110 0.2588 17 00000 0.5083 25 10010 0.7755
2 00101 0.0403 10 11100 0.2969 18 01111 0.5523 26 11000 0.7799
3 10100 0.0623 11 10001 0.3307 19 11110 0.5743 27 00010 0.8224
4 00100 0.1033 12 00110 0.3550 20 11001 0.6193 28 01000 0.8481
5 11101 0.1519 13 01100 0.3807 21 10011 0.6450 29 11011 0.8967
6 10111 0.1776 14 00001 0.4257 22 01110 0.6693 30 01011 0.9377
7 01101 0.1988 15 10000 0.4477 23 01001 0.7155 31 11010 0.9597
8 00111 0.2458 16 11111 0.4917 24 00011 0.7288 32 01010 1.0000
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Figure 2: Modified genome signature. Bacteria Helicobacter pylori J99

”Genome signature”. DNA sequence S = s1s2 . . . sm = {si, si ∈ A, i = 1, m},
A = {A,C,G,T} can be expressed in an equivalent form as two-dimensional binary
sequence (2). Let ϕ(x) be an one-dimensional projection of x (table 1). Attribut-
ing the coordinate ϕ(x(j)) to the moving binary sequence x(j) = sjsj+1 . . . sj+n−1,
j = 1, m− n + 1 of the length n for the entire DNA we obtain a set of two-dimensional
points. This set is called ”genome signature”.

The signature of the sequence of 105 nucleotides is drawn. Differently from tradi-
tional ”genome signature” obtained by CGR, the patterns obtained are rather smooth,
the set of points is not divided into sub-squares and fractality is not so evident (fig. 2).

Using bacterial DNA data from GenBank, we have discovered some characteristic
patterns. As it could be expected, related bacteria gave similar genome signature.
It is clear that such genome signature patterns depend also on one-dimensional code
distribution in the sequence. Taking only one genome signature coordinate a DNA
sequence can be analysed by one of two characteristics of nucleotides.
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