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Abstract

In the paper it is supposed that random sequences is a finite-order Markov
chain. The analysis of high order interactions in such sequences leads to large and
sparse contingency tables. A special data presentation form and data transforma-
tion via multidimensional scaling enables us to apply generalized logit model and
reduce the problem to the fitting nonparametric multinomial logistic regression
with a few quantitative variables.

1 Introduction

Let x := {x1, . . . , xn} be a sequence of random elements with values from a finite
alphabet A. DNA molecule, for instance, consists of nucleotides of four types: adenine
(A), guanine (G), citozine (C), and timine (T). Thus, it is a sequence with the alphabet
A = {A,C,G, T}.

In applications it is usually assumed that x form a homogenous Markov chain of
a finite order k. The number of parameters of the model increases very fast with
k. Therefore fitting the model for observed data is a challenging problem even for
moderate values of k. A common practice is to perform loglinear analysis however the
basic conditions are not met in this case and certain adjustments are necessary (see,
e.g. [3]).

In this paper we use a special data presentation form and data transformation
via multidimensional scaling for statistical analysis of such random sequences. This
enables us to apply generalized logit model [1, 9] and reduce the problem to the fitting
nonparametric multinomial logistic regression with a few quantitative variables.

2 Markov property and generalized logit

In this section basic notions of Markov fields are introduced and their relations with
generalized logit model is described.

Let N := {1, . . . , n}. Fix some positive integer m < n/2 and define N◦ := {m +
1, . . . , n − m}, ∂N := N \ N◦, U(l) = Um(l) := [l − m, l + m] \ {l}, l ∈ N◦ where
[i, j] := {i, i+ 1, . . . , j}, i < j, i, j ∈ N, is an interval of integers. Given x ∈ An and a
set of indices I ⊂ N let xI := {xi, i ∈ I} denote the corresponding subsequence of x.
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Definition 1. A random sequence x ∈ An is homogeneous Markov chain (random
field) of order m if ∀l ∈ N◦ and a ∈ An

P{xl = al|xj = aj, j �= l} = P{xl = al|xUm(l) = aUm(l)} := p(al|aUm(l)). (1)

It is supposed that values of the Markov chain x are fixed on the boundary ∂N ,
x∂N = c∂N for some c ∈ An.

Set X+ := {a ∈ An : a∂N = c∂N}. If probabilities P{x = a} > 0 for all a ∈ X+, the
distribution of the homogeneous Markov chain of the order m is uniquely determined
by odds ratios for some reference value, say b ∈ A, given the values z = xUm(l) of the
m nearest neighbours Um(l) (Hamersley-Clifford theorem, see [4]):

Oy|b = Qy|b(z) :=
p(y|z)
p(b|z) , y ∈ A, z ∈ A2m. (2)

Let us introduce the following structure of the observed sequence x ∈ An with
n = nm(m+ 1) − 1, nm is an integer,

x = {(yl, zl), l ∈ S}, S = Sn,m = N◦⋂{m+ 1, 2m+ 1, . . . , n−m}, (3)

where yl := x(m+1)l is a target variable and zl = xUm(l) is a vector of explanatory
variables, l ∈ S.

Assume
(a) {yl, l ∈ S} are conditionally independent given {zl, l ∈ S},
(b) the effect of z on y does not depend on the position l.

Note that these assumptions are fulfilled if x is generated by a homogeneous Markov
chain of the order m. They ensure that common conditions of the generalized logit
model [1] are satisfied. The Markov property implies the additional conditions on odds
ratio (2). Namely, the odds ratio depends on z = xUm(l) only through interactions
xIj , j = 0, . . . , m, where Ij = Um(l) ∪ [l −m + j, l + j]. This gives a basis for testing
Markovity and selection of the Markov order.

The main problem is the sparsity of the data which takes place even for moderate
values of m. A way to overcome this problem is ”smoothing” of the data. Since the
data is nominal the smoothing can not be made in a standard way. One can proceed
as follows.

For simplicity assume that A = {0, 1}. Then any sequence z ∈ Am can be identified
with a rational (dyadic) number r = r(z) ∈ [0, 1) via its dyadic representation. Let
ρ(u, v) be some natural distance between sequences u, v ∈ Am. In computer science,
Levenshtein or other edit-type distance is usually used. Further, let τ = τ(M) denote a
permutation ofM := {1, . . . , m} and zτ = (zτ(1), . . . , zτ(m)). The permutation τ is to be
selected to minimize the discrepancy between the distance ρ(u, v) and |r(τ(u))−r(τ(v))|
(multidimensional scaling). Let τ ∗ denote the solution of this problem. Then the
problem of estimation of the odds ratios Oa|b(z), y ∈ A, z ∈ A2m can be reduced to
that of (nonparametric) estimation of the functions ψy : [0, 1) → [0,∞) defined by

ψy
(
r
(
τ ∗(z)

))
= Oy|b(z), y ∈ A, z ∈ A2m. (4)

This task can be solved via kernel smoothing, (orthogonal) series expansions, and
another common nonparametric technique. We refer to [7, 5, 6].
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3 Applications: DNA sequences

It is natural to consider DNA evolution in time as a homogeneous Markov process. The
first stochastic models of DNA evolution assume that the nucleotides in DNA sequence
evolve independently from each another. Recently context-dependent evolution models
have been proposed (see [8] and references therein). In these models, mutation of
each nucleotide depends on its neighbouring nucleotides (context). If DNA sequence
evolution in time is reversible and mutation of nucleotides depends on their nearest
neighbours, say k from the each side, then stationary distribution of nucleotides in
the sequence is k-th order Markov chain (see, e.g., [8]). Is this valid for real DNA
sequences?

Avery and Henderson [3] (see also [2]) have considered this problem by using non-
coding sequences found within the human (preproglucagon) gene. Supposing that DNA
sequence is a finite order Markov chain, they have analyzed pairs and triplets of nu-
cleotides, fitted log-linear model to the observed nucleotide frequencies and assessed
the Markov chain order. They have showed that the first order Markov chain is not
a good fit to the data while the second-order hypothesis is not rejected. However,
because of linear and statistical dependencies in the data the standard assumptions of
the log-linear model do not hold. Therefore certain adjustment of the χ2 criterion is
used and validated by means of simulation.

In our study we use data of bacteria genoms from the GenBank database. The
data is presented in the special form described in Section 2. This ensures that the
standard assumptions of generalized logit model hold and standard software (SAS
system procedure CATMOD, [9]) can be applied to fit the model and test hypotheses
provided m ≤ 2. The hypothesis of second-order Markovity was rejected, e.g., for
non-coding regions of bacteria E.Coli taken from the GenBank.

For larger m and k ≤ m, the computations are prohibitively expensive. Repre-
sentation (4) and nonparametric multinomial logistic regression (generalized logit) is
applied to tackle the problem. In this case the functions ψy depend on two (or four)
quantitative variables. The results of the analysis will be presented and discussed.
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