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Abstract

The paper deals in a preliminary way with the problem of fuzzy cluster-
ing of fuzzy data. A distance between triangular fuzzy numbers is considered
and the data preprocessing method-ology for constructing of a fuzzy tolerance
matrix is described. A numerical example is given and results of application of
D-AFC(c)-algorithm of fuzzy clustering to a set of triangular fuzzy numbers are
considered in the example. Some preliminary conclusions are stated.

1 Introduction

Most fuzzy clustering techniques are designed for handling crisp data with their class
membership functions. However, the data can be uncertain or fuzzy. Fuzzy numbers
are well used to model the fuzziness of data. Yang and Ko [2] recently proposed a class
of fuzzy c-number (FCN) clustering procedures for fuzzy data clustering. A direct
fuzzy clustering method was outlined by Viattchenin [1], where a basic version of direct
fuzzy clustering algorithm was described. Detection of a unique allotment among given
number c of fuzzy α-clusters is the aim of classification. The version of the algorithm,
which is described by Viattchenin [1], can be called the D-AFC(c)-algorithm.

The goal of the paper is a consideration of possibilities of an application of object-
data clustering techniques to fuzzy data clustering. For this purpose, a consideration
of distance between triangular fuzzy numbers is presented. A methodology for the
data preprocessing is described. Results of application of the D-AFC(c)-algorithm to
a set of triangular fuzzy numbers are considered in a numerical example. Preliminary
conclusions are formulated.

2 A distance between triangular fuzzy numbers

Triangular fuzzy numbers are important case of LR-type fuzzy numbers. The problem
of proximity-based fuzzy clustering for fuzzy data can be illustrated on a simple example
of triangular fuzzy numbers. That is why a concept of a LR-type fuzzy number must
be defined in the first place.

Let L or R be decreasing, shape functions from �+ to [0, 1] with L(0) = 1 and
∀x > 0, L(x) < 1, ∀x < 1, L(x) > 0;L(1) = 0 or L(x) > 0, ∀x and L(+∞) = 0. Then
a fuzzy set V is called a LR-type fuzzy number V = (m, a, b)LR with a > 0, b > 0 if a
membership function µV (x) of V is defined as
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where m is called the mean value of V and a and b are called the left and right spreads.
In LR-type fuzzy numbers, the triangular and Gaussian fuzzy numbers are most

commonly used. In particular, for a LR-type fuzzy number V = (m, a, b)LR if L and
R are of the form

T (x) =

{
1 − x, 0 ≤ x ≤ 1
0, otherwise

, (2)

then V is called a triangular fuzzy number, denoted by V = (m, a, b)T and its mem-
bership function is defined as

µV (x) =

⎧⎨⎩ 1 − m− x

a
, for x ≤ m, (a > 0)

1 − x−m

b
, for x ≥ m, (b > 0)

. (3)

Let us consider a distance between triangular fuzzy numbers. The distance was pro-
posed by Yang and Ko [2]. Let F(LR)FN(�) denote the set of all LR-type fuzzy numbers
and X = V1, . . . , Vn be a set of fuzzy numbers in F(T )FN(�). A distance d2

(T )FN(Vi, Vj)

for any two triangular fuzzy numbers Vi = (mi, ai, bi)T and Vj = (mj , aj , bj)T in the
space F(T )FN(�) can be defined as follows:

d2
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2
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(4)

After application of a distance to the data set X = {V1, . . . , Vn} a matrix of coef-
ficients of pair wise dissimilarity between objects dn×n = [dij], i, j = 1, . . . , n can be
obtained.

3 The data preprocessing

Some object-data fuzzy clustering procedures can be applied directly to the data given
as the matrix of dissimilarity coefficients dn×n = [dij], i, j = 1, . . . , n. A proximity
relation is known as a tolerance relation also. Fuzzy tolerance is the fuzzy binary
intransitive relation which satisfies a symmetricity property and a reflexivity property.
A matrix of fuzzy intolerance I = [µI(xi, xj)], i, j = 1, . . . , n must be obtained for
construction of the fuzzy tolerance matrix. For the purpose, the data can be normalized
as follows:

µI(xi, xj) =
dij

max
i,j

dij
, (5)
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where dij, i, j = 1, . . . , n are dissimilarity coefficients. The matrix of fuzzy tolerance
T = [µT (xi, xj)], i, j = 1, . . . , n can be obtained after application of complement oper-
ation

µT (xi, xj) = 1 − µI(xi, xj), ∀i, j = 1, . . . , n (6)

to the matrix of fuzzy intolerance I = [µI(xi, xj)], i, j = 1, . . . , n. The matrix of
fuzzy tolerance T = [µT (xi, xj)], i, j = 1, . . . , n is the matrix of initial data for the
D-AFC(c)-algorithm and some other proximity-based fuzzy clustering techniques.

4 A numerical example

Let us consider an application of the D-AFC(c)-algorithm to the classification prob-
lem for the following illustrative example, which was considered by Yang and Ko [2].
The set X = {V1, . . . , V30} of triangular fuzzy numbers is presented in Figure 1.

Figure 1: The graph of 30 triangular fuzzy numbers

The distance d2
(T )FN(Vi, Vj) was applied to the data set X = {V1, . . . , V30} and the

matrix T = [µT (xi, xj)], i, j = 1, ..., 30 of fuzzy tolerance was obtained. By executing
the D-AFC(c)-algorithm for three classes we obtain following: the first class is formed
by 4 elements; the second class by 17 elements; the third class by 9 elements. The
allotment, which corresponds to the result, was obtained for the tolerance threshold
α = 0.93455116. The fuzzy number V1 = (m1 = 3.34, a1 = 1.46, b1 = 1.30)T is
a typical point τ 1 of the fuzzy α-cluster which corresponds to the first class. The
fuzzy number V15 = (m15 = 23.47, a15 = 0.81, b15 = 0.51)T is the typical point τ 15

of the fuzzy α-cluster which corresponds to the second class and the fuzzy number
V30 = (m30 = 45.77, a30 = 1.71, b30 = 0.79)T is the typical point τ 30 of the fuzzy
α-cluster which corresponds to the third class. Member-ship functions of three classes
are shown in Figure 2.
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Figure 2: Membership functions of three classes of the allotment

5 Concluding remarks

The result of the numerical experiment seems to be satisfactory. The result of appli-
cation of the D-AFC(c)-algorithm to the set of triangular fuzzy numbers shows that
the D-AFC(c)-algorithm is an effective clustering procedure for classification of fuzzy
numbers.
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