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Abstract

The problem of the probability density estimation by using n size sample of
stationary process is considered. We investigate conditions which the coefficients
in approximation of Mean Integrated Squared Error should satisfy to receive the
consistent estimator. The clear approximation formula of optimal bandwidth for
dependent data is given.

1 Introduction

Let X be a stationary process with marginal density f(x) and let {Xi}ni=1 be a sample of
size n from this process at the discrete times t, t+∆, . . . , t+(n− 2) ∆, t+(n− 1) ∆,
where ∆ is the time between observations. The nonparametric estimator of f (x ) is

defined by fh(x) = 1
nh

n∑
i=1

K(x−Xi

h
) [1], where h is a smoothing parameter or band-

width and K(x) is a kernel function which is a symmetric probability density [1]. In
nonparametric kernel estimation it is supposed [1] that

h → 0, hn → ∞ as n → ∞. (1)

The statistical properties of fh(x) depend closely on the bandwidth h [1]. To eval-
uate the optimal h it is necessary to choose a measure of distance between the true
density f(x) and the estimator fh(x). Especially common choice is the Mean Integrated
Squared Error (MISE) [2]

MISE(h) ≡
+∞∫

−∞

E
[
(fh(x) − f(x))2] dx. (2)

2 Approximation and Order of Coefficients

Since it is impossible to find optimal bandwidth in explicit form from expression (2),
we determine it approximately. Using of Taylor’s expansion for (2) in a neighborhood
of point h = 0, choosing from this representation only those terms which depend on h
(up to the order h4) gives following approximation for MISE (h):

g(h) =
ν2

hn
− αh2 + βh4. (3)
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Here it is denoted

α = µ2

⎛⎝ ∞∫
−∞

f(x)f (2)(x)dx− 2

n2

n−1∑
j=1

(n− j)

∞∫
−∞

jf
(2)
0, 2 (x, x) dx

⎞⎠ ,

β =
1

6n2

n−1∑
j=1

(n− j)

∞∫
−∞

(
jf

(4)
0, 4 (x, x)µ4 + 3jf

(4)
2, 2 (x, x)µ2

2

)
dx− µ4

12

∞∫
−∞

f(x)f (4)(x)dx,

ν2 =

∞∫
−∞

K2(u)du, µr =

∞∫
−∞

urK(u)du, jf
(m)
k,m−k (x, x) =

∂mfj (t, s)

∂tk∂sm−k

∣∣∣∣
t=x, s=x

,

where f j(t, s) is a joint density of (X k, X k+j), k = 1, n− j, j = 1, n− k.
The necessary condition of extremum may be written as

h4 − αh2

2β
− ν2

4βhn
= 0. (4)

Thus, the optimal bandwidth for a sufficiently great size of sample is determined
from the equation (4).

Provided that α > 0, β > 0, the solution of this biquadratic equation is

h2 =
α

4β
+

α

4β

√
1 +

4βν2

α2nh
. (5)

Assuming (1), let’s find conditions which α and β should satisfy. There are two
situations:

Situation 1.
The data arrive online and interval ∆ remains constant. By using (3), we identify

the order of α and β. It is possible to show that at this situation α ∼= Ank, k ∈ [−1, 0],

β ∼= Bnm, m ≤ 0, where φ(n) ∼= ϕ(n) means lim
n→∞

φ(n)
ϕ(n)

= 1. Let’s find conditions which

α and β should satisfy to provide (1) as n → ∞. The result depends on the behavior
of the radicand in expression (5) as n → ∞:

Case 1. The second term in radicand tends to zero as n → ∞.
Case 2. The second term in radicand tends to infinity as n → ∞.
Case 3. The second term in radicand tends to constant c as n → ∞.
Then using (1) and asymptotic expression of radicand we have h2 ∼= α

2β
∼= Ank

2Bnm for

case 1, h2 ∼= α
4β

√
4βν2
α2nh

or h ∼=
(

ν2
4βn

)1/5 ∼=
(

ν2
4Bnm+1

)1/5
for case 2, h ∼= 4Bν2

A2c
nm−2k−1 or

h2 ∼= α
4β

+ α
4β

√
1 + c ∼= Ank

4Bnm

(
1 +

√
1 + c

)
for case 3. Respectively we get the following

set of inequalities:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k −m < 0,
k −m+ 2 > 0,
3m
2

− 5k
2

− 1 < 0,
−1 ≤ k ≤ 0,
m ≤ 0

for case 1,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m+ 1 > 0,
m < 4,
6m
5

− 2k − 4
5
> 0,

−1 ≤ k ≤ 0,
m ≤ 0

for case 2,

⎧⎨⎩
3m− 5k − 2 = 0,
−1 < k ≤ 0,
−1 < m ≤ 0
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for case 3. The solutions of these sets are shown in figure 1 (left side): domain a for
case 1, domain b for case 2, boundary between domains a and b for case 3.

Situation 2.
There is a realization of process X on time interval [t, t+ T ]. Then to construct

a nonparametric estimation of density we use n observations of process X from this
finite interval. Time ∆ between observations may be determined as ∆ = T/(n− 1).
It is obvious, that ∆ → 0 as n → ∞. Joint density function in definitions of α and
β tends to marginal function which is multiplied by delta-function (at least, for finite
values j ), that is fj(x, y) −→

n→∞
f(x)δ(y − x). Let’s notice, that in definitions of α and

β we have y = x. As a result α and β tend to infinity as n → ∞. Therefore we have
that α ∼= Ank, k > 0, and β ∼= Bnm, m > 0.

Let’s find conditions which α and β should satisfy to provide (1). We can consider
three cases the same as at Situation 1. The asymptotic expressions for h are identical.
We have the following sets of inequalities:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k −m < 0,
k −m+ 2 > 0,
3m
2

− 5k
2

− 1 < 0,
k > 0,
m > 0

for case1,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m+ 1 > 0,
m < 4,
6m
5

− 2k − 4
5
> 0,

k > 0,
m > 0

for case 2,

⎧⎨⎩
3m− 5k − 2 = 0,
0 < k < 2,
0 < m < 4

for case 3. The solutions of these sets are shown in figure 1(right side): domain a for
case 1, domain b for case 2, boundary between domains a and b for case 3.

3 Formula for Optimal Bandwidth

Thus, to find the optimal h in case 3 of Situation 2 it is necessary to solve the equation
of the fifth degree, which results from (4). To simplify a problem, we will construct
simple approximation formula for a case 3. We evaluate optimal parameter for function

g(h) (3) by use of expression h∗ =
(

ν2
4nβ

)1/5

+ a
(

ν2
4nβ

)b
. To find unknown constants

a and b we substitute h∗ in the equation of the necessary condition of extremum (4).
Let’s rewrite (4) as

4βnh5

ν2

= 1 +
2αnh3

ν2

(6)

and decompose (h∗)5 and (h∗)3 by use the Binomial theorem. Substituting these de-
compositions in the equation (6) gives

4βn

ν2

((
ν2

4nβ

)
+ 5

(
ν2

4nβ

)4/5+b

a + 10

(
ν2

4nβ

)3/5+2b

a2 + . . .

)
=

= 1 +
2αn

ν2

((
ν2

4nβ

)3/5

+ 3

(
ν2

4nβ

)2/5+b

a+ 3

(
ν2

4nβ

)1/5+2b

a2 +

(
ν2

4nβ

)3b

a3

)
.

The first terms on the right hand side and on the left hand side are equal to unity.
Equating second terms gives the following formula for optimal bandwidth:
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Figure 1: Admissible domains for orders of α and β. Left side for Situation 1. Right
side for Situation 2.

h∗ =

(
ν2

4nβ

)1/5

+
α

10β

(
ν2

4nβ

)−1/5

. (7)

Let’s determine orders of α and β to satisfy conditions (1). It is easy to show, that
performance of the these conditions for the first and the second terms of (7) results in
the following set of inequalities {

−1 < 2k −m < 0,
−1 < m < 4.

It is obvious that formula (7) may be applied not only to a case 3 of Situation 2.
Let’s determine now as far as bandwidths determined under the formula (7) and as

the solution of the equation (4) are close to each other. Using (6), it is easy to prove:

Proposition 1. Let the condition α ≤ h2
gβ, where hg is the bandwidth obtained by

minimization of function g(h) (3), be held. Then the bandwidth h∗ evaluated by formula
(7) satisfies to the inequality 0.8hg < h∗ < 1.2 hg.

Proposition 2. Let the conditions α > h2
gβ and

√
α
2β

≤ 5

√
ν2

2βn
be held. Then the

bandwidth h∗ evaluated by formula (7) satisfies to the inequality 0.7hg < h∗ < 1.2 hg.

Thus, we are convinced that for the cases, that were considered in propositions 1
and 2, formula (7) can be used as approximation of optimal bandwidth hg.
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