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Abstract

In the work are obtained generalizations of the inequality proved by H. Cher-
noff for bound on the variance of an absolutely continuous function of a standard
normal random variable.

Let X be a standard normal random variable (r.v.). H. Chernoff in [1] proved an
inequality playing important role in the theory of statistical inferences:

for any real valued absolutely continuous function g(x),

Dg(X) ≤ E(g′(X))2. (1)

It should be noted that the mentioned Chernoff inequality is exact since one can
easy check that this inequality becomes the equality for linear functions g(x).

A.A. Borovkov and S.A. Utev in [2] obtained an inequality essentially generalized
inequality (1), namely, they proved an inequality of type (1) for an arbitrary r.v. with
the distribution function having an absolutely continuous component.

Let ξ be a r.v. with the distribution function

Fξ(x) = αF1(x) + (1 − α)F2(x) (2)

where 0 ≤ α ≤ 1, F1(x) have the probability density f1(x).
Suppose Fξ(x) satisfies the conditions:

∞∫
u

xdFξ(x) ≤ cf1(u) for u ≥ 0,

−
u∫

−∞

xdFξ(x) ≤ cf1(u) for u < 0

(3)

at some c > 0.
In [2], it is given the simple proof of the following

Theorem 1. Let Fξ(x) satisfy conditions (2) and (3). Then for any absolutely contin-
uous function g(·),

Dg(ξ) ≤ c

α
E (g′(ξ))2 . (4)

51



Remark 1. In the case of

P(ξ < x) = Fξ(x) = Φ(x) =
1√
2π

x∫
−∞

e−u
2/1du, (5)

conditions (2) and (3) are realized at α = 1, c = 1, and

f1(x) = f(x) =
1√
2π
e−x

2/2.

To make sure of validity of the last assertion, it is sufficient to differentiate the
equality

∞∫
x

uf(u)du = f(x).

Thus, inequality (4) generalizes the Chernoff inequality (1) sufficiently.
In the following theorem, we give generalization of inequality of Chernoff-type (4).

Theorem 2. Let ξ and η be independent r.v.’s and Fξ(x) satisfy conditions (2) and
(3). Then for any absolutely continuous function g(x) with g(0) = 0,

Dg(ξη) ≤ c

α
E
[
η2 (g′(ξη))2

]
. (6)

In the case of P(η = 1) = 1, inequality (6) implies estimation (4).
Remark 2. B.L.S. Prakasa Rao in [3] proved inequality (6) in the case of ξ is a

standard normal r.v. (i.e. with distribution function (5)). Denote also that in [3],
using a characterization of the normal distribution obtained by Ch. Stein in [4], lower
bounds for E [g(ξη)]2 are determined.

Further suppose that considered r.v.’s are defined in a probability space (Ω,F ,P).
The following theorem generalizes inequality (6).

Theorem 3. Let ξ1, ξ2, . . . , ξn be independent r.v.s’ with a common distribution func-
tion F (x). Let F (x) satisfy conditions (2) and (3). Let Fi be σ-algebras generated by
r.v.’s ξ1, ξ2, . . . , ξi for 1 ≤ i ≤ n (F0 = {Ω,∅}). Suppose Yi and Ti are Fi−1-measurable
and r.v.’s Yj and Tj , i ≤ j ≤ n are independent of ξi for i ≥ 1. Then for any partially
differentiable functions g(·, . . . , ·) and h(·, . . . , ·) from R

n

|Cov (g(ξ1Y1, . . . , ξnYn), h(ξ1T1, . . . , ξnTn))| ≤
n∑
i=1

(
E

[
Yi
∂g

∂xi

]2

E

[
Yi
∂h

∂xi

]2
)1/2

. (7)

Remark 3. Let ξ1, ξ2, . . . , ξn be independent r.v.’s with common standard normal
distribution function (5). Suppose that random vectors (Y1, . . . , Yi) and (T1, . . . , Ti)
are independent of (ξ1, ξi+1, . . . , ξn) at 1 ≤ i ≤ n. Then (7) holds.

The following results can be obtained as corollaries to Theorem 3.
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Corollary 1. Let X be a standard normal r.v., g(·) and h(·) be real valued absolutely
continuous functions. Then

|Cov(g(X), h(X))| ≤
(

E

[
dg

dX

]2

· E
[
dh

dX

]2
)1/2

.

Corollary 2. Let X1, X2, . . . , Xn be independent r.v.’s with common distribution
function (5). Further suppose that functions g(·, . . . , ·) and h(·, . . . , ·) from Rn have
partial derivatives of the order 1. Then

|Cov[g(X), h(X)]| ≤
n∑
i=1

(
E

[
∂g

∂Xi

]2

E

[
∂h

∂Xi

]2
)1/2

here X = (X1, . . . .Xn).

Remark 4. If one passes to the limit in inequalities (6), (7), then he can obtain an
analog of the inequality of Chernoff-type for stochastic integrals

T∫
0

α(t)dw(t)

where a nonrandom function α(t) ∈ L2(0, T ), w(t) is the standard Wiener process
determined on [0, T ].

For example, Theorem 2.2 of [3] implies that for any absolutely continuous function
g(x),

D

⎡⎣g
⎛⎝ T∫

0

α(t)dw(t)

⎞⎠⎤⎦ ≤
T∫

0

α2(t)dw(t)E

⎡⎣g′
⎛⎝ T∫

0

α(t)dw(t)

⎞⎠⎤⎦2

.

Note also that the last inequality can be used for characterization of the Wiener
process in the class of random processes with independent increments.
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