
137

Development of Dynamic Subject Domain Based on Distributed

Expert Knowledge

Anna Karkanitca

Yanka Kupala State University of Grodno, Belarus, Grodno, 230023, 22 Ozheshko str.,

karkanica@gmail.com
Abstract: The paper describes the technology of

development a dynamic subject domain based on

distributed expert knowledge. The implementation of

algorithms and technological components of this

technology is discussed.

Keywords: dynamic subject domain, domain model,

distributed resources, knowledge acquisition.

1. INTRODUCTION

In a modern society there is a considerable quantity of

complicated tasks which demand the prompt and

qualitative solutions.

Quality of solution can be provided at the expense of

use advanced innovative knowledge. Experts are the

sources of this knowledge. They are able to provide an

actuality, accuracy and completeness of knowledge.

Experts are dispersed worldwide. They are distributed

territorially, removed geographically from each other.

Actually their knowledge is distributed resource [1].

Thus, we face a problem of acquisition of the distributed

expert knowledge. It is not only aspect of a problem of the

solution of complicated tasks.

Under conditions of the prompt rates of development

of technical progress, information technology,

communication facilities, knowledge quickly becomes

obsolete and loses the topicality. Hence, it is necessary to

reduce the time expended on knowledge acquisition and

their processing.

Such tasks type has a subject domain which is defined

as the sum of the innovative knowledge received from

distributed experts. Properties of knowledge are specific

(knowledge are distributed, dynamical and have a short

life cycle). So we are faced with the problem of

constructing a subject domain which is, first, is formed

from a variety of distributed resources, and secondly, is

dynamic. Tasks of a performance of large-scale projects

by the team of territorially remote executors concern the

tasks of this type. Also it can be manage task of the

distributed organizational structure united in some

administrative hierarchy, software development by the

distributed teams of developers and others. Characteristic

feature of these tasks is a need for allocation of work

between the executors (task decomposition), followed by

the union of the results. Necessity to get a quick solution

requires automation of the process of forming the subject

domain. For this purpose it is necessary to develop a

technology which would contain means and the

mechanisms allowing us to form a structurally-

information model of the subject domain, to produce a

modification of the model and to acquire knowledge from

distributed sources.

In terms of computer science, the important

components of this technology are:

• information component (set of formalized knowledge

necessary and sufficient for the task solution);

• algorithmic component (set of methods and

algorithms providing obtaining of task solution);

• technological component (technical tools and software

for automation of processes of creation domain model and

acquisition of expert knowledge).

In this paper the implementation of algorithmic and

technological component is proposed.

2. PROBLEM DEFINITION

Problem definition we will formulate as follows: let T

be the task demanding the operative solution. We will

define T as a set of following components:

T = (S, Group, S
1
, …, S

n
, Req

1
,…, Req

k
,

Solution
1
, …,Solution

n
, t

1
,…,t

n
),

(1)

where S – statement of the general problem;

Group = (Center, Expert
1
, Expert

2
, …, Expert

n
) – group of

executors including center (Center), initiating the task and

the distributed executors (Expert) which implement the

subtasks solution;

S
1
, …, S

n
 – set of subtasks received as a result of

decomposition S;

Req
1
, …, Req

k
 – requirements to solutions;

Solution
1
, …, Solution

n
 – formalized information received

in the course of subtasks solution;

t
1
, …, t

n
 – restrictions of temporal expenses for subtasks

solution.

It is required to develop the program technology

providing:

1. Construction of model domain of task T.

2. Decomposition of the model on fragments

corresponding to subtasks (S
1
, …,S

n
).

3. Modification of the model in case of subtasks

topology changing and connecting of new executors.

4. Acquisition of knowledge (Solution
1
, …,Solution

n
)

from remote sources (Expert
1
, Expert

2
, …, Expert

n
).

It is proposed to implement the solution of the

problem in several stages:

1. To define a concept of dynamic domain model as an

information structure which represents hierarchy of

subtasks and has internal mechanisms of dynamic

adaptation (structural and informational) throughout all

life cycle of the model.

2. To select a method of representation of model in the

form of the tree-like graph, each vertex of the graph is

marked by set of attributes identifying a subtask.

3. To develop algorithms for constructing and

modifying the model of the dynamic subject domain

based on algorithmic graph theory.

4. To develop a method for describing the model in

the form of formal specification.

138

5. To develop architecture of program system for

automation of process of creation, visualization and

modification of dynamic domain model.

Further we will consider implementation of each of

stages.

3. ALGORITHMS FOR CREATION AND

MODIFICATION OF MODEL DOMAIN

We will represent a domain model of task T using a

graph theory. Let define a concept of the dynamic graph.

Graph G we will name dynamic graph if it is possible

to passage from state G
1
 (V

1
, E

1
) to state G

2
 (V

2
, E

2
), and

sets (V
1
, V

2
) and (E

1
, E

2
) accordingly, don't coincide.

We say that a modification of the graph G is a process

of passage of G from state G
1
 at the moment of time t

1
 to

state G
2
 at the moment of time t

2
 which can be caused

because of some sequence of operation (adding vertex,

removing vertex, graph partition, merging graphs).

According to (1) we will associate each vertex of the

graph with the following set of attributes:

v = <id, task, name, addr, status, inf >, (2)

where id – the unique identifier of vertex (task), task –

task description (requirements to solution), status – vertex

state (0 - the task is initiated, but it is not solved; 1 – the

task is in the course of the solution, 2 – the task is solved),

name – the unique identifier of the expert, addr – the

address of the expert, inf – information component

(actually the solution of the task presented in one of

admissible formats).

Further we will name the tree-like hierarchical graph

as a tree.
Let on set of vertex of tree G the set of the admissible

operations designated above is defined. We need to
develop a data structure for representation of the dynamic
tree under a sequence of two kinds of operations: a link
operation that combines two trees into one, and a cut
operation that divides one tree into two.

To solve this problem we propose a modification of
the dynamic structures and algorithms developed by
R. Tarjan and D. Sleator (A Data Structure for Dynamic
Trees [2]). The choice is justified by the fact that this data
structure has a time bound of O(1ogn) per operation when
the time is amortized over a worst-case sequence of
operations.

We want to represent the trees by a data structure that
allows us easily to extract certain information about the
trees and easily to update the structure to reflect changes
in the trees caused by two kinds of operations:

 link(v, w): If v is a tree root of G and w is a

vertex in another tree, link the trees containing v and

w by adding the edge(v, w), making w the parent of v.

 cut(v): If node v is not a tree root, divide the tree

containing v into two trees by deleting the edge from v

to its parent.

We will describe these operations under a sequence of

simple operations, which can be intermixed in any order

and that are allowed on the set of vertices and the set of

edges of the dynamic tree:

parent(vertex v): Return the parent of v. If v has no parent

(it is a tree root), return a special value null.

root(vertex v): Return a root of the tree containing v.

path(vertex v): Return the path containing v.

head(path p): Return the head (first vertex) of p.

tail(path p): Return the tail (last vertex) of p.

after(vertex v): Return the vertex after v on path(v). If v is

the tail of the path, return null.

concatenate(path p,q): Combine p and q by adding the

edge (tail(p),head(q)) . Return the combined path.

split(vertex v): Divide path(v) by deleting the edges

incident to v. Return a list [p, q], where p is the subpath

consisting of all vertices from head(path(v)) to before(v),

q is the subpath consisting of all vertices from after(v) to

tail(path(v)).

The set of valid operations allows us to formulate

algorithms for creation and modification of a dynamic

tree in terms of these operations. We describe these

algorithms using a version of Dijkstra’s command

language:

1. Operation parent

function parent(vertex v);

 if v = tail(path(v)) return dparent(v);

 if v< > tail(path(v)) return after(v);

end parent;

2. Operation root

function root(vertex v);

 return tail(expose(v))

end root;

3. Operation link

procedure link(vertex v, w, real x);

concatenate(path(v), expose(w), x)

end link;

4. Operation cut

function cut(vertex v);

path p, q; real x, Y;

expose(v);

[p,q,x,y] := split(v);

dparent(v) := null;

return y

end cut;

4. FORMAL SPECIFICATION OF DYNAMIC

TREE MODEL

There are some conventional standards for the

description of graphs and graph models. The most of them

don't give us the flexible mechanism of the extension of

language by adding new properties or new structural

elements of the graph. That doesn't allow us to use these

formats for representation of dynamic domain model.

DGML is deprived this lack. DGML is a directed

graph markup language which is based on simple XML.

Significantly is the fact that DGML can be expanded to

include structured elements corresponding to the specific

subject domain.

In this section, we describe how the basic graph-

topology (nodes and edges) are represented in DGML.
We propose to extend the format DGML by defining

additional elements that will represent the dynamic graph

model in accordance with the model (1) and given a set of

attributes (2).

The nodes of a graph are represented by a list of

<Node> elements. Each node must have an id attribute.

The edge set is represented by a list of <Link> elements.

Edges and nodes may be ordered arbitrarily and it is not

required that all nodes are listed before all edges. Clearly,

the space requirement for storing a graph with n nodes

and m edges in DGML is in O(n + m).

139

Let an element <Node/> be a node of the graph

corresponding to a subtask, an element <Link/> - a link

connecting an initial node with a target node and setting a

graph edge. An element <Node/> should contain a set of

the obligatory attributes allowing to describe a subtask.

An element <Link/> should contain a set of the obligatory

attributes defining hierarchy of subtasks. With the help of

the extension DGML-attributes one can specify additional

information of simple type for the elements of the graph.

Simple type means that the information is restricted to

scalar values, e. g. numerical values and strings. So we

can define a list of <Property/> elements with additional

attributes:

<Properties>

 <Property Id=”TaskID” Label=”task identifier”

DataType=”string” />

 <Property Id=”Status” Label=”task status”

DataType=”int” />

<Property Id=”NameID” Label=”expert identifier”

DataType=”string” />

 <Property Id=”Addr” Label=”expert address”

DataType=”string” />

</Properties>

For determination of hierarchy of subtasks the element

<Link/> should contain at least two attributes: Source –

unique identifier of initial node of an edge, Target –

unique identifier of target node. The set of edges of the

graph can be presented as follows:

<Links>

<Link Source=”…” Target=”…”/>

<Link Source=”…” Target=”…”/>

<Link Source=”…” Target=”…”/>

...

</Links>

As a result we have the formal specification for

representation of dynamic domain model of the task (1)

which is implemented at the expense of usage of the

DGML extension mechanism.

5. ARCHITECTURE OF PROGRAM SYSTEM

It is necessary to develop software to automate the

process of constructing the domain model. The

architecture of a software system should be focused on

what sources of information are distributed.

We propose a multi-component architecture of

software. Each component implements an appropriate

process of solving the problem (1): construction and

modification of the domain model, knowledge

acquisition, synthesis of the final solution.

The architecture of a software system is represented

by a set of the following components:

 Builder: Solves the problem of constructing and

modifying the domain model.

 Analyzer: Analyzes the subject domain in terms of

its completeness.

 Miner: organizes the interaction between

distributed experts to acquire knowledge.

 Combiner: performs the synthesis of the final

solution.

All components use a common unit of data access.

The component Builder is a software component

designed to allow for the construction, storage,

modification and visualization of the domain model. The

implementation of components is executed on the Java

platform using open source frameworks and tools for

Java-environment (Hibernate, Spring Framework, Spring

Security).

6. CONCLUSION

In this paper we have considered a class of problems

whose solution is formed as a result of the joint activity of

distributed experts. We have identified a subject domain

of this class of problems as a dynamic subject domain.

Domain model, algorithms for creation and modification

of model domain, formal specification of dynamic tree

model are proposed. As a result, we have described the

automation technology for creation dynamic subject

domain. Implementation of several stages of this

technology is presented.

7. REFERENCES

[1] V. Krasnoproshin, O. Konovalov, A. Valvachev.

Technology of building knowledge bases on

distributed cognition resources, Herald of the National

Technical University "KhPI". Subject issue:

Information Science and Modelling. – Kharkov: NTU

"KhPI". – 2010. – №. – P
[2] D.D. Sleator, R.E. Tarjan. A Data Structure for

Dynamic Trees, Journal of Computer and System

Sciences, 26 (3) 1983 p. 362-391

