
104

The Problem of Automation in Dynamic Models Visualization

V. Krasnoproshin
1)

, D. Mazouka
2)

1) Belarussian State University, 220030 Minsk, Nezavisimosti av. 4, krasnoproshin@bsu.by

2) Belarussian State University, 220030 Minsk, Nezavisimosti av. 4, mazovka@bk.ru

Abstract: This paper describes a methodology for the

graphics pipeline extension. The introduced approach is

based on specialized formal language called visualization

algebra. We argue that this technique can lower

visualization software development costs and build a way

for further computer graphics automation.

Keywords: Graphics pipeline, visualization system,

visualization algebra.

1. INTRODUCTION

Visual representation is the easiest way for people to

deal with complex information. This is why most of the

practical problems, which are solved today with computer

technology, require visualization for the resulting data.

And this was the cause for computer graphics to become

a popular area of scientific and engineering interest.

During its rapid development, computer graphics has

formulated a plenty of sophisticated concepts, and one of

the most important is the graphics pipeline. The notion of

graphics pipeline stands for a set of methods, devices and

software implementing the process of visualization.

The development of the graphics pipeline has been

going so far in direction of complete automation. The

principal part of its implementation consists of hardware,

and software part plays mostly auxiliary interface role.

This software is represented now by a number of

hardware independent programing libraries [1]. In the

same time, however, there are a lot of other problems not

covered by the pipeline which stay between automated

layer and the original application task.

This paper describes a potential approach for further

graphics pipeline functionality extension and automation.

This is achieved by complete formalization of the

visualization process.

2. PROBLEM ANALYSIS

In computer graphics the term “visualization” (or

rendering) refers to the process of translation of some

computer model into a raster image (frame). So in the

very general sense, the problem of visualization can be

described by the following expression:

ImagesModels
A

 , (1)

where Models – initial set of models, Images – a set of

images and A – is a translation algorithm.

According to resolve the problem of visualization for

some particular model and desired set of images we need

to build the algorithm A. However, the problem itself is

weakly structurized so the algorithm doesn't have a

formal representation. And even though modern hardware

devices and programming libraries provide a significant

assistance in visualization systems development, the

number and variety of visualization problems grow every

year, making development more costly and less

controllable.

To be able to analyze the visualization process, we

will make an overview of its processing stages separating

them by different levels of abstraction.

The first level of abstraction is the physical level

(Fig.1):

Model Visualization
Informal solution

editor interpretation

HW data Signal
Physical process

Fig.1 – Physical level of abstraction

At first, the model data is translated into hardware-

specific data (HW data). Then it is processed by physical

implementation of rasterization algorithm providing

Signal as an output. The Signal is interpreted on computer

display as resulting visualization of the initial Model.

This simple scheme was used in early computer

graphics methodologies, and was very difficult (the

algorithm was hard to implement using primitive

hardware operations), inflexible (slight changes in input

data would lead to significant changes in implementation)

and hardware-dependent (the process couldn't be easily

moved from one hardware system to another).

According to solve these problems, a new level of

abstraction was introduced – the application level. On

this level all the primitive hardware operations were

standardized within special graphics pipeline

methodology. Two main standard application libraries

employing this technology are Direct3D and OpenGL.

Taking into account this concept, the visualization

process scheme can be represented by Fig.2:

Model Visualization

Graphics API data Frame
Instructions sequence

Informal solution

editor interpretation

HW data Signal
Physical process

projection display

Fig.2 – Application level of abstraction
In this case model data is translated into formal

graphics API (library Application Programming Interface)

data. The algorithm is implemented as a sequence of

instructions, and then automatically transformed into

105

physical process.

Graphics API data is represented by the following data

types (graphical objects): vertex buffers (geometry data),

index buffers (topology data), textures (images which

describe surface properties) and shader programs

(geometry or image transformation procedures). This data

is processed with three sets of operations: Create (allocate

and initialize graphics data), Set (set graphics data input)

and Draw (render data). Instructions sequence looks like:

);...;;)...(;...;;(21121 mnn DrawSetSetSetDrawSetSetSet , (2)

here each Draw instruction is preceded with a

sequence of corresponding Set instructions.

Thus, using this notion, the problem of visualization

can be reformulated as follows: having a computer model

defined with a set of graphics objects, build a sequence of

instructions which translate this model into a frame.

Graphics pipeline on application level lowers overall

difficulty of visualization process implementation and

removes the problem of hardware dependency by

introducing Hardware Abstraction Layer (HAL)

technology. However with the growing complexity of

visualization problems, implementation flexibility and

difficulty issues appear again.

These problems can be solved using special graphics

engines [2] – programming libraries which abstract some

functions of the graphics pipeline. Graphics engines are

successfully used in a large number of practical

visualization solutions and are usually much simpler and

flexible in comparison to the graphics pipeline interfaces.

However, these positive engine's features are local – the

visualization systems are usually oriented on specific

problem areas. Any attempt to use the engine beyond the

frames of its applicability results in serious efforts for

adaptation or complete replacement. Thus the problem of

effective visualization process construction remains

unsolved.

In this article we offer a formal methodology which

helps to build general visualization algorithms and makes

possible further intensive automation of the graphics

pipeline.

3. ABSTRACT VISUALIZATION LEVEL

As it was said above, the problem of visualization

process construction is still difficult on the application

level. To be able to ease this difficulty we will introduce

another process description level – the abstract level (see

Fig.3).

At this level we are working with a computer model of

some dynamic system. We will consider the model in

object form [3], as this is currently the most common way

for model representation.

If to classify the model’s data by type, semantic and

domain, we will get a number of categories which we’ll

call attribute types and specified values – attributes:

 ValueTASemanticDomainTypeT AA ,,,, , (3)

where TA – attribute type, A – attribute, Type – data

type, Domain – attribute domain, Semantic – the meaning

of the attribute and Value – attribute’s value.

Every model’s object Oi can be defined with a set of

corresponding attributes }{ ji AO  . We will call a scene a

subset of objects which is to be visualized in the model

}{ iOS  .

Model Visualization

Computer Model Raster Image

Graphics API data Frame
Instructions sequence

Formal solution

Informal solution

editor

projection visual output

interpretation

HW data Signal
Physical process

projection display

Fig.3 – Abstract level

Using this notation, the visualization problem can be

reformulated in the following way: having a defined

scene S of some computer model, build an algorithm A

which translates this scene into a frame F:

FS
A

 (4)

Taking into account processes at sibling abstraction

levels, the problem of visualization can be represented in

this way (Fig.4):

S F

GO F

Instructions

Fig.4 – Abstract and application levels
Here a scene S translates into a set of graphical objects

GO, and then processed by an instructions sequence to get

a frame F. We can label the whole instructions sequence

here as Render:

S F

GO F

Render

Fig.5 – Render procedure
If the scene is sophisticated enough, we can separate

some instructions chunks Renderi which correspond to

visualization of specific objects (Fig.6). Each of such

chunks can be viewed as a separate visualization process.

106

S F

GO F

Render1 Render2 Rendern

Fig.6 – Render subsequences
Instructions that do not produce any visual output and

responsible only for data transformation will be marked

as Transform. Frames generated by Renderi are later

composed (or blended) together into a single output frame

via instructions subsequences which we will mark as

Blend.

Thus the instructions sequence on the application level

can be marked with the following subsequence labels:

1. Render – frame generation for some particular

set of objects

2. Transform – graphics object transformation

without frame generation

3. Blend – frames composition

This mapping depends on the actual data entering the

graphics pipeline. To separate these formalisms from data

we will introduce a logical operation Sample.

The process of visualization is efficiently a step-by-

step objects transformation which can be executed either

in single or multiple threads. And using the introduced

formalisms the process can be described with the next

expression:

FrameBlend

BlendTransformRenderSample

SamplejectsGraphicsOb

n

n

n







)((5)

So the whole graphics objects set is sampled onto

subsets which are then processed by Render, Transform

and Blend subsequences and finally all resulting frames

are blended into a single frame.

In this way Sample, Render, Transform and Blend

procedures can be used to describe any application level's

instruction sequence. And now, according to formalize

visualization algorithm itself, we need to move from

technological procedures to abstract operations.

4. VISUALIZATION ALGEBRA

Let there is non-empty set of objects A, and a set of

operations ,...},{ 10 FFF  defined on A. We will call an

algebra the object consisting of both these sets:

 FA, [4].

Now we take a union of a set of all possible finite sets

of scene objects and a set of all possible frames:





NNiOObjects

FramesObjects

i ,0},{

,}{
, (6)

where  MMjAO ji ,0},{ , Aj – is an object's

attribute.   kmnVVFFFrames kmn ,,,,},{ – a set of

frames, which is efficiently a set of matrices of real

vectors.

Using formalisms introduced above, we can define the

following operations:

 DABABDASample ,,,,: (7)

Sample initial set A into a subset B with respect to

conditional set D.

 BkABATransform k

kk ,,,: 0
 (8)

Change and rearrange objects in initial tuple of sets Ak

and get a resulting set B.

 pFramesFkAFARender p

p

k

kpk ,,,,: 0
 (9)

Translate initial tuple of sets Ak into a tuple of frames

Fp.

 pFramesFFramesFFFBlend p

pp ,,,: (10)

Compose a tuple of frames Fp into resulting frame F.

Summarizing this, the following object will be called

a visualization algebra (VA):

 BlendRenderTransformSampleVA ,,,, (11)

Any valid operators superposition in VA will be called

an algebraic expression. For complete algebraic

expression we will take an expression of the following

type:

FSExpressionVisual : , (12)

where S – is an initial scene and F – a resulting frame.

Now we will show the relationship of a complete

algebraic expression in VA with some instructions

sequence on the application level. Let we have an

instruction sequence implementing a visualization

algorithm in (4) form: FS
A

 . Then we can always make a

corresponding algebraic expression in this form:

FSRender :0
, (13)

where Render0 – operator encapsulating the whole

visualization algorithm. This kind of complete

visualization expressions
0RenderessionVisualExpr  we will

call degenerate. In case if the instructions sequence can

be decomposed, we can make more sophisticated

algebraic expressions in its correspondence. Thus any

instructions sequence implemented on the application

level has a corresponding complete algebraic expression

in VA (degenerate in the worst case).

Now we will show that reverse is true as well. For the

sake of this, we will define a projection operation:

),,...,,,,(

)()(:)(

)(:)(

)(:)(

)(:)(

2211 ii drawsetdrawsetdrawsetSequence

emptyargsSampleargs

SequenceargsBlendargs

SequenceargsRenderargs

SequenceargsTransformargs











, (14)

where Sequence – is application level's instructions

sequence (2), args – corresponding operators' arguments.

Projection provides each of the operators (taken with

proper arguments) with an instructions sequence. Now we

will look, how we can apply projection to a complete

algebraic expression.

A complete algebraic expression (12) can be

represented by oriented weakly bound acyclic graph with

S as initial node and F as an ending node. Intermediate

107

nodes of this graph are corresponding operators. Edges

correspond to superposition between operations. An

example of such graph is visualized on the Fig.7:

S

Render1Sample1

F

Blend

Render2Sample2

Fig.7 – Example of expression graph
Execution sequence of operators within expression can be

obtained via topological sorting of the corresponding

graph's nodes. In our case we will get:

BlendRenderSampleRenderSample ,,,, 2211
 (15)

Projection of operators sequence equals a

concatenation of projections of each operator separately,

so we get:

SequenceSessionVisualExprS

SequenceSequence

SequenceemptySequenceempty

FFBlendFFSRenderS

SSampleSSRenderS,SSampleS

FFBlendSRender

SSampleS,RenderSSampleS

SessionVisualExprS

Blend

Render2Render1

1

1















)(:)(

,),(,),(

),(:),(),(:)(

),(:)(),(:)()(:)(

),(),(

),(),()(:)(

)(:)(

2121222

2111

2122

211

(16)

Thus for any complete algebraic expression in VA we

can get a corresponding instructions sequence via

projection of topologically sorted sequence of operations

from this expression.

Thus every instructions sequence has a corresponding

complete algebraic expression and every complete

algebraic expression has a corresponding sequence.

Now we will show, that every visualization problem

can be resolved in visualization algebra in the form of

complete algebraic expression.

5. VISUALIZATION PROBLEM SOLVABILITY

Having proven the fact that algorithm A (4)

representations on the application and abstraction levels

are mutually related, we can conclude that if the

visualization problem is solvable using particular

hardware and software on the application level, it can be

solved in the terms of visualization algebra. Then

visualization problem can be reduced to the following:

having a computer model described in abstraction level's

(scene) terms and a list of requirements for the final

frame, build a complete algebraic expression in VA,

which implements the process of translation of scene into

a resulting frame.

The complexity of reformulated problem is lower than

on the application level. And in the same time it is more

flexible, because we use maximally generalized form of

the initial computer model. Thus the problem of local

flexibility, common for any graphics engine, is solved.

Now we will give an overview of the new

methodology of visualization problem solution.

6. EXPRESSION BUILDING ALGORITHM

According to build a complete algebraic expression in

VA (12) FSessionVisualExpr : for the given scene S and

resulting frame F, we need to make at least these basic

steps:

1. Define subsets of objects from S, which can be

visualized with uniform methods:

 iSObjectsObjectsT ii ,},{ (17)

2. For each element from T define corresponding

operator Renderi

3. For each Renderi define corresponding

decomposition operator Samplei

4. Define composition operator Blend

5. Build a complete algebraic expression using the

following nominal scheme:

Expression → (FirstExpression (SubExpression | λ)

 LastExpression) | “F = Render(S);”

FirstExpression → param “=” (“Render” |

 “Sample”) “(S);”

SubExpression → param “=” function “;”

 (SubExpression | λ)

LastExpression → “F = “ function “;”

function → (“Render” | “Sample” | “Blend”) “(“

 (params | λ) “)”

params → param | param “,” params

param → identifier

Expression built using this scheme will be complete in

visualization algebra.

7. PRACTICAL EXAMPLE

The following small example demonstrates usage

features of the offered methodology.

Let we need to visualize a small scene consisting of a

few geometrical objects lit by one light source with some

interface handles for object attributes manipulation. An

example of a resulting frame is shown on the Fig.8:

Here we have the following types of objects:

 1. Geometrical objects, with attributes:

 a) Vertex buffer – data describing a surface

 b) Transform – transformation matrix

 2. Light sources:

 a) Position – source position in the scene

 b) Color – source color

 3. Camera

 a) Transform – transformation matrix

 b) Fov – angle defining field of view

 4. UI elements:

 a) Vertex buffer – vertices for line ends

108

 b) Transform – transformation matrix

 c) Color – element color

Sample operators:

1. Samplegeo(Objects, Camera) – sample

geometrical objects from Objects which are visible for the

Camera

2. Samplelight(Objects) – sample light sources

3. Samplecam(Objects) – sample cameras

4. Sampleui(Objects, Camera) – sample UI

elements visible for the Camera

Render operators are necessary only for visible

objects:

1. Rendergeo(Objects, Lights) – render lit

geometrical objects

2. Renderui(Objects) – render UI elements

Blending operator:

1. Blendover(Frame1, Frame2) – simple overlapping

operation, pixels from Frame2 discard corresponding

pixels from Frame1

Now we can build the expression:

Camera = Samplecam(S);

Lights = Samplelight(S);

Geo = Samplegeo(S, Camera);

Ui = Sampleui(S, Camera);

Frame1 = Rendergeo(Geo, Lights);

Frame2 = Renderui(Ui);

F = Blendover(Frame1, Frame2);

This expression is the implementation of the

visualization algorithm for the given visualization

problem. And now, if the initial problem changes, the

expression can be updated with minimal efforts.

8. CONCLUSION

Visualization problem is still a complicated

development task today. The growing number and variety

of applications requiring visualization makes traditional

methodologies hard to use. According to resolve this

issue, the article provides analysis of generalized

visualization problem and gives a formal representation of

corresponding processes. As a result, a special

development methodology was proposed. Based on so-

called visualization algebra, this methodology helps in

visualization systems development and provides an

opportunity for further extension and automation of

graphics hardware.

9. REFERENCES

[1] Microsoft DirectX documentation (August 2009).

[2] J. Gregory. Game engine architecture. A K Peters,

Ltd. Wellesley, 2009.

[3] G. Booch. Object-Oriented Development IEEE

Transactions on Software Engineering. Vol SE-12,

NO.2, February 1986.

[4] Maltsev A. Algebraic systems, М. Nauka, 1970, P. 46

– 47.

