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In many cases, the queue length processes in retrial queues are described by the spatially
inhomogeneous Markov chain caused by transitions due to repeated attempts. This lack of
homogeneity is one of the causes of analytical complexity of retrial queues and leads to an
approximation method. Many authors approximate the original inhomogeneous system by
the so-called generalized truncated system in which the retrial rates are restricted to be con-
stant over a given level and the level is enlarged until the satisfactory solution is obtained.
However, the rigorous mathematical proofs for the convergence of generalized truncation
method are a few and are treated case by case. In this paper, we provide a proof of conver-
gence of the approximation by using the tightness and the stochastic comparison between
retrial queues. Some examples are presented to show the usefulness of our approach.,
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1. INTRODUCTION

The queueing systems with repeated attempts (called retrial queues) are characterized
by the following feature. When an arriving customer finds that all servers are busy and no
waiting position is available, the customer joins a virtual pool of blocked customers called
‘orbit’ and repeat its request after a random time until the customer gets into the service
area. The queue length processes in retrial queues are described by the Markov chain with
spatially inhomogeneous infinitesimal generator (or transition probability matrix for discrete
time case) caused by transitions due to repeated attempts. This spatial inhomogeneity often
leads the analytical complexity and numerical approximations are needed. The detailed
overviews of the related references with retrial queues can be found in Falin and Templeton
[7] and Artalejo [3].

Falin and Templeton [7] listed several truncation methods to compute the stationary dis-
tribution using the other calculable system which is given by varying the retrial rates. There
have been drawing the researchers’ attention for augmented truncation methods where one
truncates the chain to the first N states, makes the resulting matrix stochastic and irreducible
in some convenient way, and then solves the finite system (eg. see Seneta {13], Heyman
[8] and the references therein). Seneta [12] presented a necessary and sufficient condition
for the augmented truncation method to converge to the original stationary distribution is
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that the sequence of approximating distribution is tight. Zhao and Liu [17] showed that the
censored Markov chain provides the best approximation among finite truncation methods
in the sense of minimal /;-sum of errors between the exact distribution and approximation.
However, the truncation method uses a Markov chain with a finite state space. So, if the
stationary distribution of the infinite-state Markov chain has a long tail, and averages and
variances are heavily affected by truncation, the truncation level may have to be very large
to get a good approximation, This drawback can be improved by using another calculable
system with infinite state space. This method is said to be generalized truncation method
[7]. Shin [16) and Shin and Pearce [15] showed that a generalized truncation method can
provide the better results than those of censored chain for the Markov chain with transition
matrix of upper Hessenberg form.

A variety of generalized truncation models have been considered to approximate the
original intricate retrial quenes e. g., [11, 7, 6, 1]. However, rigorous mathematical proofs
for the convergence of generalized truncation methods are a few and are treated case by
case.

In this paper we present a criterion for the convergence of the generalized truncation
model to the original system in terms of tightness of probability distributions. Comparison
methods are used for the proof of tightness in some examples. In section 2 we provide
some preliminary results on the convergence of probability distributions. In section 3 we
apply the results in section 2 to some retrial quenes from the literature.

2. PRELIMINARIES

We start with recalling the notion of tightness of probability measures. A sequence {x,}
of probability distributions on Ny = {0,1,2,...} is said to be tight if for each € > 0 there
exists a finite set E C N, such that &, (E) > 1 — € for all n. The definition of tightness and
its properties including the theorem 2 below can be found in many probability text books,
e.g. Bilingsley [5, pp. 336]). Assume that U, () < U@ forallt 20, n=1,2,... and W()
and W,(#) converge weakly to the proper random variables W(oo) and W,(c0), n = 1,2,...
as t ~— oo, respectively. Then U,(c0) <, U(co) for all n = 1,2,... and the distributions of
{W,(co),n=1,2,...} is tight, where X <, Y means that X is stochastically less than Y, that
is, P(X > x) < P(Y > x) for all x.

Theorem 2.1 If {r,, n = 1} is a tight sequence of probability distributions on Ny, and if
each subsequence that converges weakly at all converges weakly fo the probability measure
n, then {m,} converges weakly to x.

Now consider a stochastic process W = {(U(),V()),t =0} and a sequence {W,,
n=12,...) of stochastic processes W, = {(U,(1), V,()),t > 0} on the same probability
space and with the same state space Ny X §, where S is a finite set. The following is
immediate from stochastic comparison result of Kamae et al. [9, Proposition 3] and the
definition of tightness.

Theorem 2.2 Assume that U (t) < U@) for all t = 0, n = 1,2,... and W(1) and
W.(f) converge weakly to the proper random variables W(oco) and W,(0), n = 1,2,... as
t — oo, respectively. Then U, (c0) <, U(co) for all n = 1,2,... and the distributions of
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{Wa(oo),n =1,2,...) is tight, where X <, Y means that X is stochastically less than Y, that
is, P(X > x) < P(Y > x) for all x.

Let p = (p;,j € No) and p" = (p}, j € No), n = 1.2,... be a sequence of probability
distributious on Np. Note that the weak convergence of p” to p is equivalent to lim,_,, p; =
p; for all j € Ny and is also equivalent to lim,_. [Ip" — pli = lim, .o, 2. jen, | pj -pil=0.

Proposition 2.1 Let Q = (g;;) be an infinitesimal generator of an irreducible and positive
recurrent Markov chain on Ny and % = (n}, j € No) be the stationary probability distribution
of Q. Let @" = (g} n = 1,2,... be a sequence of infinitesimal generators such that
My gf; = g for all i,j € Ny. Assume that each of Q" has stationary probability
distribution & = (J‘I:?, JeNy), n=12,.... If {n"} is tight, then lim,_, Jin"* — x| = 0.

Let N be any infinite subset of {1,2,...} such that {rn”,n € N} converges weakly to a
probability distribution, say f. Then for all j € Ny,

Ri-gp=lim ), wiqyz ) limwa;= )
ieNg—1{] ieNg-i ) feMo—1 7}
Thus &Q < 0. Since & is a probability measure, & = &. It follows from theorem 2 that the
assertion is proved.

3. EXAMPLES

In this section we apply the results in the previous section to several examples drawn
from the literature of retrial queues. It is easily seen that the infinitesimal generators of
the generalized truncation models presented below converge to that of original medel. So
we focus on the stochastic dominance between the original models and truncation models.
Following the same procedures as Bhaskaran [4] or Shin and Kim [14], the comparison
results for the examples below are obtained and we omit the proof.

3.1. BMAP/M/s/K retrial queue. We consider the queueing systemn in which there
are s identical servers and K — s waiting positions in the service facility. Service times of
customers are independent of each other and have a common exponential distribution with
parameter p. When a customer arrives and finds an idle server, the customer receives service
immediately. When a customer finds that all the servers are busy and a waiting position
is available upon its arrival, the customer occupies the waiting position. Otherwise, the
customer who finds all the waiting position is full joins orbit and retries its luck after
random time. The retrial is independent and identically repeated until a server or a waiting
position is seized. We assume that the time intervals between the successive attempts of
the customers in orbit to get service are exponentially distributed with parameters y, when
there are k = 1 customers in orbit.

Customers arrive at the system according to a batch Markovian arrival process (BMAP)
with representation representation {D,,n = 0,1,2,...}, where D,, n = 1,2, ... are nonneg-
ative m X m matrices and the matrix Dy of size m has strictly negative diagonal clements
and nonnegative off-diagonal elements and D = ¥, D, is an infinitesimal generator of
irreducible Markov chain. For the more details about BMAP, see Lucantoni [10].

Let n(r) and E(7) be the numbers of customers in orbit and service facility, respectively
at time ¢ and let J(¢) be the phase of arrival process at time ¢. Then the stochastic process

198



= {X(1),t = 0} with X(#) = (n(#), &(1), J(1)) is a continuous time Markov chain on the state
space S ={{(k, i, J), k20,1 <i<K 1< j<m}

We consider two refrial queueing systems Z% with retrial rate y?, i = 1,2, when there
are n customers in the orbit and the other features are the same as those of the model
described above. Let n¥(¢) and £E¥(r) be the numbers of customers in the orbit and the
service facility in the system £, i = 1,2 at time ¢, respectively and denote X© = (X?(r) =
M9, D), J@)), t = 0} on the state space S*. We assume that X, i = 1,2 are regular
Markov chains. Define a relation < on S by (k,[,i) < (¢,F,i) if and only if k < ¥,
k+I1<k +1 and i’ =i Then it is casily seen that < is a partial order on S.

Proposition 3.1 Assume thary$" = v and y° < yff,fl, v < yfjl Joralln=0,1,2,..
Then we can construct two stochasnc processes X9 i=1,2 on the same probability space
whose sample paths satisfy the relation X3 (t) < XO(1) for all t > 0, that is, W) < 12
and NO() + EV(1) < @) + EX().

For each positive integer N, define a retrial queueing system T and £y which are the
same as the system described above except that when there are k£ > 1 customers in the orbit,
the retrial rate v,y = o + min(k, N)f} in Zy and the retrial rate in )iN is

Sen = a+kB, 1<k<N
“NE1 oo, k> N+ 1.

Let XV = {X¥(@), ¢t > 0} and X = {XV (), t = 0} denote the Markov chains that describe
the system states of Ly and s repectively on the state space S.

Corollary 3.1 For all positive integers M and N, there exist the versions of X” and X i
on the common probability space satisfying the following relation with probability I,

XM < XV < X = X7 @) < XM < XM @), t 2 0.

Corollary 3.2 If XV is ergodic for some positive integer N, then X¥, M > N is ergodic
and the set of stationary distributions {;,,n = N} of {(X",n > N} is tight. Furthermore,
lim,_,o I8, ~ :|| = O, where ; is the stationary distribution of X.

3.2. MAP,, MAP,/M]/c retrial queue with guard channel [6]. Let £ be the MAP,,
MAP,/M/c retrial queue with two types of customers, say type 1 and type 2, in which there
are ¢ identical servers and b — ¢ waiting positions in the service facility. For the type 1
customers, ¢, = 0 servers are reserved. The service times of each type of cusiomers are
independent of each other and have a common exponential distribution with parameter p.

Type 1 customer who finds an idle server upon its arrival receives service immediately.
When a type I customer finds that all the servers are busy and a waiting position is available
upon its arrival, the customer occupies the waiting position. If all waiting positions are
occupied upon arrival of the type 1 customer, then it is lost. If the sojourn of type |
customer in the waiting position is greater than the exponential time with parameter v,
then it leave the system without being served.

On the arrival of type 2 customer, if the number of servers occupied is more than
¢ — ¢y, then it either leaves the system forever with probability 1 — p or leaves the system
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temporarily with probability p to retry for service after random amount of time. The retrial
is independent and identically repeated and the retrial times are exponentially distributed
with parameter y. On the retrial, if retrial customer finds that the number of servers more
than ¢ - ¢, are still occupied, then it returns to the retrial group as a retrial customers with
probability g or it leaves the system forever with probability 1 — g. The capacity of retrial
group is infinite.

The arrival process of type i customers is assumed to be a Markovian arrival process
(MAP) with representation (C;,D;), i = 1,2. Let J; = {J{6),t = 0} be the underlying
Markov chain of MAP on the state space {1,2,...,m;} with generator C; + D;, i = 1,2 and
J@) = (1), (1), Let X = (X(1),1 2 0} with X(1) = (99, E(), J(1)), where 1(r) and &(7)
denote the numbers of customers in orbit and service facility, respectively at time ¢. Let
Ty be the retrial queue described above except that the retrial rate is v, = min(N, k)y when
there are k customers in the orbit. Let XV = (X¥(2), ¢ 2 0} with XV(®) = (M), EV (1), J¥(9)
be the corresponding process to the system Zy.

Proposition 3.2 For each pair of integers (N, M) with M > N, we can construct two
stochastic processes X™ and XV on the same probability space whose sample paths satisfy
the relations XM(£) < XN(t) for all t 2 0.

3.3. M/M/c/c retrial queue with negative arrivals [}]. Let £ be the M/M/c/c re-
trial queue with positive and negative customers which arrive to the system according to
independent Poisson processes with rates L and 9, respectively. Let u be the service rate
of each server, respectively. The service facility consists of ¢ identical servers without any
waiting places, so an arriving customer who finds all servers busy is blocked and joins the
retrial group, called orbit. The time intervals describing the repeated attempts are assumed
to be independent and exponentially distributed with rate vy, = o + nf3, when there are n > 1
customers in the orbit and vy = 0. A negative arrival has the effect of removing a random
batch of customers from the retrial group. Let p, be the probability of deleting k customers
when a negative arrival occurs. Negative customer only act when all servers are busy. The
input flows of positive and negative arrivals, intervals between repeated attempts and ser-
vice times are mutually independent. Let n(#) and §(7) be the number of customers in orbit
and service facility, respectively at time ¢. Then X = {X(#), 7 = 0} with X(¢) = (w(£),E()) is
a continuous time Markov chain on the state space S = {(k,i), k>0, 0 <i<c].

Let Zy be the M/M/c/c retrial queue with positive and negative customers described
above except that the retrial rate is yy, = o + min(¥, #n)p, when there are n > 1 customers
in the orbit and yyo = 0. Let XV = (X¥(1),t 2 0} with X¥(®) = (¥(),E"(r)) be the
corresponding process to the system X,

Proposition 3.3 Let N be a fixed positive integer. For each M > N, we can construct two
stochastic processes XM and X" on the same probability space whose sample paths satisfy
the relations: forall t 20, () M) < "D+ N, O+ O <O +EY@®) + N, and
3) MO 2 N, then (1) 2 EV ().
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