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Abstract 
 

The term structure of interest rates plays the key role in pricing of bonds. There-
fore its properties are interesting for many financial analysts. However in liter-
ary sources usually a sketchy description of properties of term structure occurs. 
In this paper an attempt of detailed description of every possible shapes of term 
structure is made for the class of affine interest rate models because for these 
models the solutions in closed form are attainable. As basis the general model 
(GM) with arbitrary lower boundary for interest rate is taken. The results for 
well-known models the CIR model and the Vasiček model are obtained as par-
ticular cases. It is found that there is four modes for yield curve shapes. The em-
pirical evidences are presents that are based on the parameter estimates for 13 
different models of real time series of yield interest rates.  
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Introduction 

 
It is known that the term structure of interest rates plays the key role in pricing 
of bonds. The term structure of interest rates is the set of yields to maturity, at a 
given time, on bonds of different maturities. The yield curve is a plot of the term 
structure, that is the graphical description of the relationship between the yield 
on bonds of the same credit quality but different maturities on some particular 
date. The yield curve defines the prices of discount bonds and also coupon 
bonds, since a coupon bond is simply a portfolio of discount bonds. Modeling 
the yield curve is bounded up with modeling the forward rate curve. The for-
ward rate curve is a graph of rates of return for discount bonds on some future 
date. The sense of this curve will below be given more precisely.  

The objective of this paper is an investigation of properties of the yield 
curves and the forward rate curves for the affine one-factor models of the term 



structure. As it is known the affine models of the term structure are occurred if 
the short interest rate follows the stochastic process described by a stochastic 
differential equation 

 
dr(t) = (α r(t) + β ) dt + δ+γ )(tr dW(t),       γ r(0) + δ  > 0,      (1) 

 
where α, β, γ and δ are constants, and W(t) is a standard Wiener process. It is 
supposed that the values of parameters α, β, γ and δ are such that a stationary 
solution of equation (1) exists. Then this equation my be rewritten in the more 
convenient form 
 

dr(t) =  k (θ −  r(t)) dt + 
x
xtrkD

−θ
−)(2 dW(t),   r(0) > х.                    (2) 

 
Parameters of equation (2) have specific practical interpretation: θ – the sta-

tionary expectation of short interest rate r(t), D – the stationary variance of r(t); 
х is parameter that has a sense of a lower boundary for the process r(t):  r(t) ≥ х  
for every t (by Feller (1951) this boundary is inaccessible if (θ – x)2 > D); k – pa-
rameter that determines the velocity of transition to stationary regime for proc-
ess (1); the other interpretation of parameter k: it determines correlation coeffi-
cient of process (1) in the form  ρ(τ) = E[(r(t) – θ)(r(t + τ) – θ)]/D = exp{ – k|τ|} . 
The relations between parameters of equations (1) and (2) are set obviously by 
compare:  

 

k = – α  > 0,  θ  = – 
α
β  > 0,  D = 22α

αδ−γβ
 > 0,  х = – 

γ
δ  < θ.             (3) 

 
Assume that the no arbitrage conditions are held for the short rate process 

(1) (that is (2) also). In this case the market price of risk λ(r) is determined by 
equivalent relations (Ilieva, 2001): 

 

λ(r) = 
γ
δ+

γ
ξ r  = 1+

δ
γ

δ
η r  = − 

x
xrkD

−θ
−λ 2 ,                      (4) 

 
where λ is parameter that determines value of risk premium, λ ≥ 0, and parame-
ters  ξ and η are connected by the relation ηγ − ξδ = 0. 

Then on current time point t, when r(t) = r, the price P(t, r, Т) of zero cou-
pon bond that pays on maturity date Т the one money unity is determined by 
formula  

 
P(t, r, Т) = exp{A(Т − t) − rВ(Т − t)}.                          (5) 



 
In future for short the time up to maturity will be designed by τ ≡ Т − t. The 

interest rate models allowing to present the bond price P(t, r, Т) in form (5) re-
late to class of affine term structures of interest rates. The term structure func-
tions A(τ) and В(τ) solve equations  
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τd
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x
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[B(τ)]2,    B(0) = 0,               (6) 
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λ+θ

x
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x
kDx
−θ

− [B(τ)]2,    A(0) = 0.               (7) 

 
The solutions of these equations are 
 

В(τ) = 
1

1
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ετ 
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−
ε V

e
,                                         (8) 
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where for short designation it is assumed  
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The properties of the term structure functions A(τ) and B(τ) in form (8) – (9) are 
studied in details by Ilieva (2000). 

The yield to maturity y(t, T) of zero coupon bond in framework of the affine 
term structure has a form  

 

y(t, T) ≡ 
tT

TrtP
−

− ),,(ln  = y(τ) ≡ 
τ

τ−τ )()( ArB .                      (11) 

 
For determinacy note that here and below the term structure functions A(τ) 

and B(τ) are functions of one argument only at case in question when parameters 
of equation (1) are constants.   



The forward rate f(t, T, T′) determines the bond yields between dates T и T′  
when t < T < T′  by information about yield that is available at time t: 
 

f(t, T, T′) = 







′−′ ),,(
),,(ln1

TrtP
TrtP

TT
 = 

τ−τ′
τ+τ′−τ−τ′ )()()]()([ AABBr ,       (12) 

 
where τ′ = Т′ − t. When Т′ → T, that is τ′ → τ, the forward rate (12) turns into 
instantaneous forward rate  
 

f(t, T) ≡ 
T

TrtP
∂

∂− ),,(ln  = f(τ) ≡ 
τ
τ

τ
τ

d
dA

d
dBr )()( − ,               (13) 

 
that is used more often as it connected with yield to maturity rather simple 
relations  

y(t, T) = ∫−

T

t
dsstf

tT
),(1  = y(τ) = ∫

τ

τ 0
)(1 dssf                       (14) 

and conversely 
 

f(t, Т) = 
T

TtytT
∂

−∂ )],()[(  =  f(τ) = 
τ
ττ+τ

d
dyy )()( .              (15) 

 
Therefore usually an idiom „the forward rate“ means the instantaneous 

forward rate.  
 

Properties of yield curves and forward curves 
 

In this section we will investigate mutual properties of the forward rate and yield 
to maturity as functions of the time to maturity τ in framework the affine term 
structure for different values of parameters r, x and λ: r = r(t) is parameter of 
state at time t; x is parameter of the short rate model; λ is parameter of yield rate 
model. From the practical point of view there is sense to consider the properties 
of functions  f(τ) и y(τ) only for nonnegative time to maturity τ  ≥ 0, nonnega-
tive values of short rate r  ≥ 0, nonnegative parameter of risk premium λ ≥ 0 and 
in case when the Feller condition for inaccessibility of lower boundary by proc-
ess r(t) is held: θ − x > D . 

Note that in the case x = − ∞ the equation (2) generate the Vasiček model 
(Vasiček, 1977), in the case x = 0 the equation (2) generate CIR model (Cox, 
Ingersoll and Ross, 1985). The model with arbitrary value of boundary x, that is 
general model, will refer as GM model. The term structure functions A(τ) and 
B(τ) for GM model was found by Medvedev and Cox (1996); the detailed analy-
sis of GM model is contained in Ilieva (2000, 2001).    



In order to obtain the close form of function y(τ) that determines a depend-
ence of yield on the time to maturity it is sufficient to substitute the functions (8) 
and (9)   into (11). This results in to relation  

 

у(τ) = 






τ
τ+−−θ+

τ
τ−+

v
vB

V
xkBxrx ))(1ln(1)()()( ,                 (16) 

 
Here it is relevant to note that function B(τ) depending also on parameters  

x and λ plays the key role in determination both the functions  A(τ) and y(τ) and 
the function f(τ) (see below). According to (8) function B(τ) is monotonically 
increasing and such that  
 

B(0) = 0 ≤ B(τ) ≤ B(∞) = V − 1,  0 ≤ τ ≤ ∞.                        (17) 
 

B(τ) = τ − )2(
2
1 vVk λ+ τ 2 + О(τ 3)       for small values of τ.       (18) 

 
Using definition (13) for forward rate and equations (6) and (7) for func-

tions A(τ) and B(τ) it is possible to obtain following relation for f(τ) 
 

f(τ) = r + [k(θ − x) − (V − v)(r − x)]B(τ) − vV(r − x)[В(τ)] 2.             (19) 
 

The functions y(τ) and f(τ) that are determined by formulae (16) and (19) 
respectively will be named further the yield curve and the forward curve. Note 
that the forward curve in different forms for the Vasiček model and the CIR 
model were obtained by Schlögl and Sommer (1997) and there are cited some 
properties for these forward curves. In some literary sources there are informa-
tion about mutual behavior of yield and forward curves. For example in Hull 
(1989, p. 83,84), Bodie, Kane and Marcus (1996, p. 437), Campbel, Lo and 
MacKinlay (1997, p. 398), Kortanek and Medvedev (2001, p. 201) the mutual 
forms of yield and forward curves are presented on some time periods of finite 
duration. However by these plots in full measure to present the nature of curve 
modifications to set impossible. From these plots it can seem that with increas-
ing of the time to maturity the spread between yield and forward curves will be 
increase. Here it will be shown that it is impossible at least for affine term struc-
ture models. 

Below the properties of yield and forward curves are formulated. The 
proofs of properties are given in Appendix. 

Property 1. The yield curve y(τ) and the forward curve f(τ) take the same 
values on limiting times to maturity τ = 0 and τ = ∞: 

 
f(0) = y(0) = r,                                                 (20) 



 

f(∞) ≡ f*(x) = y(∞) ≡ y*(x) = .1 x
V
k

V
k






 −+θ                         (21) 

 
Because 0 < k/V < 1 then x < f(∞) ≡ f*(x) = y(∞) ≡ y*(x) < θ. From this it 

follows in particular that as τ → ∞ limiting values of yield curve and forward 
curve always less of the stationary expectation θ of short interest rate r(t). 

Note also that from the definitions of the yield to maturity and the forward 
rate following limiting relations follow as T → t 

 
y(t, T) →  y(t, t) = r(t),   f (t, T) →  f (t, t) = r(t) 

 
that are equivalent the equations (20). 

Property 2. If the time to maturity τ is small then the yield curve y(τ) and 
the forward curve f(τ) can be presented in the forms 

 
y(τ) = r + ½ [(θ − r)(k + 2λvV) − 2λkD]τ + O(τ2) ≡ 

 
≡ r + ½ [k(θ − x) − (V − v)(r − x)]τ + O(τ2),                       (22) 

 
f(τ) = r + [(θ − r)(k + 2λvV) − 2λkD]τ + O(τ2) ≡ 

 
       ≡ r + [k(θ − x) − (V − v)(r − x)]τ + O(τ2).                         (23) 

 
These formulae indicate that for λ = 0 (the term structure model is risk neu-

tral) if r > θ then the yield curve y(τ) and the forward curve f(τ) have a negative 
slope (decrease) in neighborhood of value τ = 0; if r < θ then these curves have a 
positive slope (increase) in this neighborhood. Moreover the forward curve f(τ) 
varies doubly rather than the yield curve y(τ). Formulae (22) – (23) justify also 
equation (20). 

 The Vasiček model (x = − ∞) is often attacked because it allows the nega-
tive values of short rates r(t). This can result in to negative values of the yield 
curve y(τ) and the forward curve f(τ).  At the same time the CIR model (x = 0) 
guarantees that both the short rates r(t) and the curves y(τ) and f(τ) are nonnega-
tive. Therefore it is interesting to clear up what is a minimal value of boundary x 
at GM model in order to the yield curve y(τ) and the forward curve f(τ) would be 
nonnegative. For example the necessary conditions for it can be following: a 
positive slope of the curves y(τ) and f(τ) in neighborhood of point  (τ = 0, r = 0) 
and a positive size of the limiting value f*(x) =  y*(x) that is determined by (21). 

Property 3. The limiting value y*(x) of the yield curve y(τ) (and f*(x) of 
the forward curve f(τ) too) as τ → ∞ that is determined by equation (21) is a 



monotonic increasing function of boundary x and on interval [− ∞, θ] takes val-
ues 

y*(− ∞) = θ − (1 + 2λk)D/k  ≤  y*(х)  ≤  y*(θ) = θ.                 (24) 
 
Thus if kθ > (1 + 2λk)D then the limiting value y*(x) is positive for every x < θ. 
In the case when kθ ≤ (1 + 2λk)D the limiting values of curves  f*(x) =  y*(x) ≥ 0 
for  

x ≥ x* ≡ − θ  
kDkD

kDkDDkk
λ+θ−

λ−λ+θ+θ
2

)( 2
.                            (25) 

 
Property 4. The necessary conditions in order to the yield curve y(τ) and  

the forward curve f(τ) take only nonnegative values for 0 ≤ τ ≤ ∞, that is 
 

f(∞) =  y(∞) ≥ 0                                            (26) 
and for r = 0 

0)(
0

>
τ
τ

=τd
df ,    ,0)(

0
>

τ
τ

=τd
dy                            (27) 

 
are held for every x < θ if kθ ≥ (1 + 2λk)D and for θ > x ≥ x* if kθ < (1 + 2λk)D. 
Here x* is determined by equation (25). 

Thus the yield curve y(τ) and  the forward curve f(τ) take only positive val-
ues at the Vasiček model (x = − ∞) too if kθ ≥ (1 + 2λk)D. 

The many authors analyzing the yield curves and the forward curves have 
noted that these curves can be humped, that is the curves can have maximums. 
We will found the conditions of existing the maximums of these curves and de-
termine the characteristics of these maximums. 

As already it was said the affine term structure function B(τ) have the key 
role for determination the yield curves and the forward curves and them proper-
ties. It follows from (8) that B(τ) is monotonic increasing on interval [0, ∞]. 
Note also that from (8) we have that the inverse function B(τ) is found in form 

 
τ(B) = [ln(1 + vB) − ln(1 − VB)]/ε .                             (28) 

 
In future it is convenient to consider the forward curve f(τ) and the yield 

curve y(τ) as the composite functions that depend on time to maturity τ only by 
the affine term structure function B(τ), that is  y(τ) ≡ Y(B(τ)) and f(τ) ≡ F(B(τ)). 
First, it is convenient because the possible values of function B(τ) are situated 
into a finite interval (17) therefore the properties of functions Y(B) and F(B) are 
visually displayed by graphical charts on finite interval. Second, as CIR (1979) 
have suggested, the function B(τ) may be regarded as a duration measure be-



cause, like standard duration, it is equal to minus the semi-elasticity of the bond 
price with respect to an interest rate (in this case short rate): [∂P/∂r]/P = − B(τ).  

It is obtained from the equations (16), (19) and (28) that 
 

Y(B) ≡ 
)1ln()1ln(

)1ln()()()(
VBvB

vVvBxkBxr
V

xkx
−−+

+−θ−−ε+−θ+             (29) 

and 
F(B) ≡ r + [k(θ − x) − (V − v)(r − x)] B − vV(r − x) В 2.             (30) 

 
Property 5. The forward curve F(B) is a concave function.  
If (positive) parameter r in (30) is in accord with inequalities  

 

vV
k

x
xr

vV
k

−
≤

−θ
−≤

+
                                            (31) 

 
then the forward curve F(B) on the interval  0 ≤ В ≤  V − 1 have maximum in 
point  

B* = .
2

1





 +−

−
−θ vV

xr
xk

vV
                                      (32) 

 
In this case the maximum value of the forward curve F(B) is determined by for-
mula 

F(В*) = r + .
)(4

)])(()([ 2

xrvV
xrvVxk

−
−−−−θ  

 

If the parameter r meets the inequality 
vV

k
x
xr

+
<

−θ
−  then the forward 

curve F(B) strongly increase on the interval  0 ≤ В ≤  V − 1. 

If the parameter r meets the inequality 
vV

k
x
xr

−
>

−θ
−  then the forward 

curve F(B) strongly decrease on the interval  0 ≤ В ≤  V − 1. 
Note that earlier the concavity property of the forward rate has been regis-

tered by Brown and Schaefer (1994).  
Corollary. If the value of short rate r meets the equality 
 

vV
k

x
xr

−
=

−θ
−  

 
then the maximum of forward curve is suited at point B = 0 (that is τ = 0). For 
larger values of short rate r the forward curve has no maximum and its largest 



value locates at point B = 0 also. It follows from this that the forward rates are 
largest for the short end of term structure.  

If the value of short rate r meets the equality 
 

vV
k

x
xr

+
=

−θ
−  

 
then the maximum of forward curve is suited at point B = V −1 (that is τ = ∞). 
For lesser values of short rate r the forward curve has no maximum and its larg-
est value locates at point B = V −1 also. It follows from this that in this case the 
forward rates are largest for the long end of term structure. 

The analysis of features of changing of the yield curve y(τ) ≡ Y(B(τ)) as 
function of B(τ) is more  complicated.  

Property 6. If the value of short rate r meets the inequality 
 






 +≥

−θ
−

V
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v
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x
xr 1ln  

 
then the yield curve Y(B) is a concave function on interval 0 ≤ В ≤  V − 1.              

If the value of short rate r meets the inequality 
 

Vv
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−θ
−  

 
then the yield curve Y(B) is a convex function on interval 0 ≤ В ≤  V − 1.           

If the value of short rate r meets the inequalities 
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then the yield curve Y(B) has a point of inflexion Bi on interval 0 ≤ В ≤ V − 1. In 
this case the yield curve Y(B) is the concave function on the interval 0 < В < Bi 
and it is the convex function on the interval Bi < В < V − 1.  

Note that for the limiting value of the yield curve (21) as τ → ∞ it is possi-
ble to write the inequality 
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Therefore in this case the yield curve Y(B) increases on interval 0 < В < V − 1. 



Property 7. The yield curve Y(B) has a maximum on interval 0 < В <  V − 1 

if r meets the inequalities 
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In this case the yield curve Y(B) crosses the forward curve F(B) at some 

point B0 (that is Y(B0) = F(B0)) and this point B0 is a point of maximum of yield 
curve Y(B). Furthermore  
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In other words the yield curve Y(B) crosses the forward curve F(B) at point 

B0 of its maximum. From this it follows in particular that if a maximum of the 
yield curve Y(B) exists then the maximum value always less than the maximum 
value of the forward curve F(B), that is Y(B0) < F(B*), as B* < B0. 

Let us say that the yield curve Y(B) has a mode A if its shape is concave de-
creasing. In this case the inequality  
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−θ
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vV
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is valid. The yield curve Y(B) has a mode B if its shape is concave and it has 
maximum. In this case the inequality  
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is valid. The yield curve Y(B) has a mode C if it is increasing and it has a point 
of inflexion. In this case the inequality  
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is valid. The yield curve Y(B) has a mode D if its shape is convex increasing. In 
this case the inequality  

Vv
k

x
xr

+
≤

−θ
−                                              (36) 

 
is valid.  

The main properties of the yield curve Y(B) and the forward curve F(B) are 
tabulated in the Table 1.  



Table 1 
The shapes of the yield curve Y(B) and the forward  

curve F(B) in dependence on value  the interest rate r 
 

 
THE PERFORMANCE OF INEQUALITIES 

 

 
 

(36) (35) (34) (33) 
 

F(В) concave, 
increases 

concave,  
has maximum  

at point В* 

concave, 
decreases 

concave 

Y(В) convex,  
increases 

has  
a point  

of inflexion, 
increases 

has maximum  
at point В0,  
В0 > В* 

 
decreases 

 

Y(В) < F(В) 

there is  
intersection  
at point В0, 
В0 > В* 

Y(В) > F(В)

 
On figure 1 as example all four modes represented for values of parameters 

close agreement to real: k = 0,03; θ = 0,06; D = 0,002; x = − 0,05; r = 0,07 
(mode A), r = 0,03 (mode B), r = 0,014 (mode C), r = 0,005 (mode D). 

In the inequalities (33) – (36) there is one the random parameter r = r(t). 
The rest parameters are constants. Ilieva (2000) showed that the process r(t) has 
the stationary probability density function p(r), which is a density of shifted 
gamma distribution with a shift parameter (− x), a form parameter (q + 1), and a 
scale parameter c0, that is 
 

p(r)  =  
( )
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qq
e

q
xrc −−
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where  q = ,)( 2

D
x−θ  c0 = .0>−θ

D
x  However in the inequalities (33) – (36) the 

modes are determined by random variable ζ = (r – x)/(θ – x). The probability 
density function pζ(z) for ζ will be the ordinary gamma density with the same 
form parameter q and the scale parameter c1 = (θ – x)2/D, that is 
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Γ
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Therefore it is possible to speak about the probabilities of modes A – D for 

some yield curve. In next section of paper we will compute such probabilities of  
 



 

 

Figure 1a. F – the forward curve F(B), 
Y – the yield curve Y(B) of mode A, 
c – the straight-line segment c(B). 

 

 
Figure 1c. F – the forward curve F(B), 

Y – the yield curve Y(B) of mode C, 
c – the straight-line segment c(B). 

 

 

Figure 1b. F – the forward curve F(B), 
Y – the yield curve Y(B) of mode B, 
c – the straight-line segment c(B). 

 

 
Figure 1d. F – the forward curve F(B), 

Y – the yield curve Y(B) of mode D, 
c – the straight-line segment c(B). 
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these modes for the empirical estimates of parameters that were obtained by dif-
ferent authors.   

Property 8 (Vasiček model). The Vasiček model implies that x = − ∞. In 
this case from (10) we have that v = 0, V = k. Then for inequalities (33) – (36) 
we have 

Vv
k
+

 = 




 +

V
v

v
k 1ln  = 

vV
k
−

 = 1. 

 
It means that the yield curve Y(B) for Vasiček model lacks the modes B and C. 
In other words the Vasiček model does not produce a humped yield curves. The 
probability of modes A and D are identical, that is 
 

Prob[mode A] = Prob[mode D] = 0,5. 
 

Note that some authors observe the diversity of the yield curve shapes. For 
example Fabozzi and Fabozzi (1995, p. 801–2) represent also four modes – 
normal, rising, falling and humped – and explain these modes by economic mo-
tives. Model CIR (1985) implies that the yield curve attains all four modes: 
monotonic rising (modes C and D), humped (mode B), and monotonic declining 
(mode A).  

Consider now the impact of х – the parameter that has a sense of a lower 
boundary for the process r(t) – on the yield curve more detailed. For case when 
the lower boundary is inaccessible (θ – x > D ) we have that D < θ – x < ∞. 
On the Property 3 if the inequality kθ > (1 + 2λk)D is valid then the yield curve 
Y(B) and the forward curve F(B) are positive on the interval  0 ≤ В ≤  V − 1 for all 
(θ – x) ∈  ( D , ∞). As the empirical data indicate (see next section) this ine-
quality usually is valid. Therefore we will examine only this case.  

From the inequalities (33) – (36) it follows that the boundaries of the modes 
are depended on x only through v and V that are determined by (10). Then one 
may write v = v(θ – x) and V = V(θ – x), (θ – x) ∈  ( D , ∞). From (10) one can 
see that the functions v(θ – x) and V(θ – x) monotonic decrease with rise of its 
argument and at limiting points are determined by the expressions 
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Property 9. From relations (39) one can conclude that for small values of 
parameters k and D the variation interval the functions v(θ – x) and V(θ – x) will 
be small too and the impact of variation of parameter х on the yield curve Y(B) 
and the forward curve F(B) in this case will be weak. In addition the main effect 
of variation of parameter х tells only at beginning of interval D < θ – x < ∞. 

Finally examine the effect of parameter λ ≥ 0 that determines value of risk 
premium. This parameter influences on the yield curve Y(B) and the forward 
curve F(B) only through v and V that are determined by relations (10).  

Property 10. From relations (10) one can see that the effect of increasing 
of parameter λ is practically identical to the effect of decreasing of the parame-
ter (θ – x). The distinction is only in a fact that the parameter λ can be arbitrarily 
small whereas the parameter (θ – x) is restricted from below. Therefore the 
spreads of v(θ – x) and V(θ – x) are finite on interval D < θ – x < ∞ whereas 
the spreads of v(λ) and V(λ) are infinite on interval 0 < λ < ∞. With increasing 
of parameter λ the yield curve Y(B) and the forward curve F(B) monotonic de-
crease if all other parameters are fixed.  

In conclusion note that the parameter λ in the GM model considered here 
differs from this parameter in the CIR model usually considered. A relation be-
tween them is following: λ ≡ λGM = – λCIRθ/2kD. This means that the risk pre-
mium (or term premium) in framework of the GM model is computed by for-
mula  

2kD
x
xr

−θ
− B(τ)λGM. 

 
 

Empirical evidences 
 

In order to verify the shape of the yield curve Y(B) and the forward curve F(B) 
for real model it is necessary to know the parameter values for this model. There 
are quite a few papers where the empirical results for the estimates of parameters 
of the affine term structure models are described. Most often as the short interest 
rate model it takes the CIR model. Some authors examined several models in-
cluding the Vasiček model. As a rule the estimates of parameters for CIR model 
and Vasiček model were close agreement. Author knows only one paper – Ilieva 
(2001) – where the parameters of GM model were estimated.  

The Table 2 presents a report of results that are obtained for 13 different 
models of real time series of yield interest rates. These results are contained in 
ten well-known papers (see References). Some authors did not estimate the pa-
rameter of market risk λ. In that case the according cells in Table 2 are empty 
and under calculations it is assumed that λ = 0 that is such results correspond to 
the risk-neutral market. 

 



Table 2 
 

THE CIR MODEL PARAMETER ESTIMATES 
 

Parameter estimate source k θ σ λ D 
CKLS (1992) 0,2339 0,0808 0,0854  0,00126 
Sun (1992) 1,1570 0,0520 0,1223  0,00034 
Gibbons & Ramaswamy (1993), I 12,4300 0,0154 0,4900 – 6,0800 0,00015 
Gibbons & Ramaswamy (1993), II 8,8076 0,0085 0,0000 – 5,6083 0,00000 
Gibbons & Ramaswamy (1993), III 14,4477 0,0264 0,5459 – 6,0101 0,00027 
Chen & Scott (1993) 0,4000 0,0600 0,3000  0,00675 
Pearson & Sun (1994) 0,8762 0,0311 0,1707 – 0,1282 0,00052 
Ait-Sahalia (1996) 0,8922 0,0905 0,1809 – 0,0789 0,00166 
Duffie & Singleton (1997), I 0,5440 0,3740 0,0230 – 0,0360 0,00018 
Duffie & Singleton (1997), II 0,0030 0,2580 0,0190 – 0,0040 0,01552 
Bali (1999) 0,0317 0,0642 0,0265  0,00071 
Ait-Sahalia (1999) 0,0219 0,0721 0,0667  0,00732 
Ilieva (2001) 0,1674 0,0638 0,0160   0,00005 

 
The CIR model was set as  dr(t) =  k (θ −  r(t)) dt + )(trσ dW(t), D = σ2θ/2k. Real risk 
premium is –λrB(τ). The sample periods, the financial instruments and the data 
character have been  determined from following literary sources:    

CKLS – Chan, Karolyi, Longstaff, and Sanders – (1992): the annualized one-month U.S. 
Treasury bill yield from June 1964 to December 1989 (306 observations). 

Sun (1992): 182 monthly observations of U.S. Treasury prices from November 1971 to De-
cember 1986.  

Gibbons and Ramaswamy (1993), I: monthly data from 1964 to 1989 on U.S. Treasury bill 
returns. 

Gibbons & Ramaswamy (1993), II: monthly data from 1964 to 1976 on U.S. Treasury bill 
returns. 

Gibbons and Ramaswamy (1993), III: monthly data from 1976 to 1989 on U.S. Treasury bill 
returns. 

Chen and Scott (1993): weekly U.S. Treasury data (from Singleton, 2001). 
Pearson and Sun (1994): 181 monthly prices of ten U.S. Treasury bills, notes and bonds from 

Dec 1971 to Dec 1986 (equally weighted bond portfolios). 
Ait-Sahalia (1996): the 7-day Eurodollar deposit spot rate, daily from 1 Jun 1973 to 25 Feb 

1995 (5505 observations). 
Duffie and Singleton (1997), I: weekly data from 4 January 1988 to 28 October 1994 U.S. 

Treasury bond (zero prices). 
Duffie and Singleton (1997), II: weekly data from 4 January 1988 to 28 October 1994 U.S. 

Treasury bond (yields). 
Bali (1999): annualized one-month U.S. Treasury bill yield from June 1964 to December 

1996 (390 observations). 
Ait-Sahalia (1999): the Federal Reserve System funds data monthly from January 1963 to 

December 1998. 
Ilieva (2001): annualized daily two-years U.S. Treasury note yield from 2 January 1991 to 1 

October 1996 (1439 observations). In this paper the GM model was tested. The estimate 
of the lower boundary: x = – 0,01998. It is one of ten U.S. Treasury bills, notes and 
bonds yields data examined there. 



Table 3 present the useful numerical data that are necessary for computa-
tion of the yield curve Y(B) and the forward curve F(B) and their characteristics. 

 
Table 3 

 
USEFUL INFORMATION ABOUT MODELS EXAMINED 

 
This table report useful information about the models tested in literary sources listed in Table 
2. On basis of the parameter estimates presented by Table 2 here the next magnitudes have 
been computed. For that CIR models, where the parameter λ was estimated, it was produced 
recalculation to a form λGM = – λθ/2kD for using in the GM model. In this model the risk 
premium (term premium) is calculate by formula 2kDB(τ)λGM(r – x)/(θ – x) in a dependence 
on the short rate r and the term to maturity τ. This table present too the magnitudes v and V 
that are important for representation of many characteristics the GM model including the yield 
curve Y(B) and the forward curve F(B). These magnitudes are calculated by the expressions 
(10). Then limiting values of the yield curve y(τ) (and the forward curve f(τ)) as the term to 
maturity τ → ∞ are tabled: y(∞) = f(∞) = limτ → ∞ y(τ) ≡ limτ → ∞ Y(B(τ)) (see formula (21)). 
Farther the limiting values of the term structure function B(τ) as the term to maturity τ → ∞ 
are presented: B(∞) = limτ → ∞ B(τ) = V –1 (see formula (17)). This quantity is a maximum 
value of argument the yield curve Y(B) and the forward curve F(B) for respective graphical 
charts. The parameter estimates for the CIR models, which are presented in Table 2, can be 
used as possible parameters for analysis the GM models. For this case in the last column there 
are the minimal values of y*(x) ≡ y(∞) on x, that is y*min ≡ y*(–∞) = limx → – ∞ y*(x) (see for-
mula (24)). These data show that for the real values of the model parameters the limiting val-
ues of the yield curves y(τ) (and the forward curves f(τ)) as the term to maturity τ → ∞ for 
practically all models remain positive for all values x ∈ (− ∞, θ − D ) of inaccessible lower 
boundary for the interest rate process r(t). Only two models out of 13 are some exclusions:  1) 
Model Duffie and Singleton (1997), II. In this case y*(x) < 0 if x < − 0,0615; and 2) Model 
Ait-Sahalia (1999). In this case y*(x) < 0 if x < − 0,0625.  
  

Data source  λGM v V y(∞) B(∞)  y*min 

CKLS (1992)  0,015 0,249 0,076 4,023 0,075 
Sun (1992)  0,006 1,163 0,052 0,860 0,052 
Gibbons & Ramaswamy (1993), I 25,32 0,006 18,516 0,010 0,054 0,008 
Gibbons & Ramaswamy (1993), II  0,000 8,808 0,009 0,114 0,009 
Gibbons & Ramaswamy (1993), III 20,17 0,007 20,465 0,019 0,049 0,015 
Chen & Scott (1993)  0,092 0,492 0,049 2,034 0,043 
Pearson & Sun (1994) 4,40 0,014 1,019 0,027 0,982 0,026 
Ait-Sahalia (1996) 2,41 0,017 0,988 0,082 1,012 0,081 
Duffie & Singleton (1997), I 68,05 0,000 0,580 0,351 1,723 0,349 
Duffie & Singleton (1997), II 11,08 0,010 0,017 0,045 57,526 -5,260 
Bali (1999)  0,009 0,040 0,050 24,771 0,042 
Ait-Sahalia (1999)  0,037 0,059 0,027 16,844 -0,262 
Ilieva (2001)  0,001 0,168 0,064 5,953 0,064 

 
Table 4 presents the mode specifications for models with parameters de-

termined by Table 2.  
 



Table 4 
 

PROBABILITIES OF MODES FOR YIELD CURVES 
 

This table reports the features of the yield curves for the CIR models if the parameters 
of these models are equal to the estimates presented in Table 2. The first three columns show 
the bounds that separate the different shapes of the yield curves Y(B) on the modes. These 
bounds are determined by equalities: T1 ≡ k/(v + V), T2 ≡ k ln(1 + v/V)/v, T3 ≡ k/(V − v). For 
the determination of the shape mode of the yield curve Y(B) it is convenient to use the (ran-
dom) variable ζ = (r − x)/(θ − x). This random variable has the probability density function of 
the gamma distribution (38). In according to (33) – (36) the yield curve Y(B) has the mode D 
if ζ < T1, the yield curve Y(B) has the mode C if T1 < ζ < T2, the yield curve Y(B) has the 
mode B if T2 < ζ < T3, and the yield curve Y(B) has the mode A if T3 < ζ. The probabilities 
of these random events are presented in the four last columns. 

  
Mode boundaries Probabilities of modes DATA SOURCE T1 T2 T3 D C B A 

CKLS (1992) 0,888 0,914 1,000 0,453 0,025 0,080 0,442 
Sun (1992) 0,989 0,992 1,000 0,535 0,003 0,009 0,453 
Gibbons & Ramaswamy (1993), I 0,671 0,671 0,672 0,422 0,000 0,000 0,578 
Gibbons & Ramaswamy (1993), II 1,000 1,000 1,000 0,500 0,000 0,000 0,500 
Gibbons & Ramaswamy (1993), III 0,706 0,706 0,706 0,378 0,000 0,000 0,622 
Chen & Scott (1993) 0,686 0,746 1,000 0,583 0,021 0,073 0,323 
Pearson & Sun (1994) 0,848 0,854 0,872 0,511 0,004 0,011 0,474 
Ait-Sahalia (1996) 0,888 0,896 0,919 0,458 0,007 0,022 0,513 
Duffie & Singleton (1997), I 0,936 0,937 0,938 0,036 0,001 0,003 0,960 
Duffie & Singleton (1997), II 0,108 0,135 0,429 0,001 0,001 0,084 0,914 
Bali (1999) 0,646 0,711 1,000 0,201 0,062 0,292 0,445 
Ait-Sahalia (1999) 0,226 0,286 1,000 0,282 0,045 0,329 0,344 
Ilieva (2001) 0,993 0,995 1,000 0,490 0,006 0,019 0,485 

 
From Table 4 one could say that the modes B and C for real models are 

unlikely occurred. This property is similar to property of the Vasiček model 
where these modes are absent.  

Thus for real one-factor models of the affine class of term structure only two 
shape modes of the yield curve Y(B) can practically to occur. The yield curve is 
concave decreases when the interest rate r is rather high: r > x + k(θ − x)/(V − v); 
and the yield curve is convex increase when the short interest rate r is rather 
small: r < x + k(θ − x)/(V + v). The intermediate values of the interest rate r are 
unlikely occurred since the values of magnitude v are very small (see Table 3).  

On figures 2 – 5 the examples of the yield curves Y(B) and the forward 
curves F(B) are presented. For these examples the results of CKLS (1992) and 
Bali (1999) are chosen (see Table 2). Figures 2 and 3 show the yield curves Y(B) 
and the forward curves F(B) for the CKLS (1992) parameters of models for dif-
ferent values of spot rate r and barrier x. Figures 3 and 4 show the yield curves 
Y(B) and the forward curves F(B) for the Bali (1999) parameters of models for 
different values of spot rate r and barrier x. 



 

Figure 2. The yield curves Y(B) (solid line) and the forward curves F(B) (dashed line) for the 
CKLS (1992) parameters of models for different values of spot rate r = 0,065; 0,073; 0,077; 
0,085; and barrier x = 0 (CIR model case). The limiting point of curves is shown by circle. 

The markers on axis B mean terms to maturity τ = 0,5; 1; 2; 3; 5; 7; 10; 20; 30 years. 

Figure 3. The yield curves Y(B) (solid line) and the forward curves F(B) (dashed line) for the 
CKLS (1992) parameters of models for different values of spot rate r = 0,061; 0,071; 0,077; 

0,09; and barrier x = – 1000 (quasi Vasiček model case). The limiting point of curves is 
shown by circle. The markers on axis B mean terms to maturity   

τ = 0,5; 1; 2; 3; 5; 7; 10; 20; 30 years. 

0,06

0,07

0,08

0,09

0,10

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5B (τ)

0,06

0,07

0,08

0,09

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5B (τ)



 

Figure 4. The yield curves Y(B) (solid line) and the forward curves F(B) (dashed line) for the 
Bali (1999) parameters of models for different values of spot rate r = 0,0385; 0,044; 0,055; 
0,08; and barrier x = 0 (CIR model case). The limiting point of curves is shown by circle.  

The markers on axis B mean terms to maturity τ = 0,5; 1; 2; 3; 5; 7; 10; 20; 30 years. 

 
Figure 5. The yield curves Y(B) (solid line) and the forward curves F(B) (dashed line) for the 

Bali (1999) parameters of models for different values of spot rate r = 0,014; 0,025; 0,045; 
0,08; and barrier x = – 1000 (quasi Vasiček model case). The limiting point of curves is 

shown by circle. The markers on axis B mean terms to maturity 
τ = 0,5; 1; 2; 3; 5; 7; 10; 20; 30 years. 
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Figures 2 – 5 confirm the data of Table 1 for the empirical results. One can 
see that the yield curves monotonic decrease if the spot rate is rather high (ine-
quality (33) is fulfilled) and the yield curves monotonic increase if the spot rate is 
rather low (inequalities (35) and (36) are fulfilled). The forward curves tend to its 
limiting values as τ → ∞ faster than the yield curves. Therefore the yield curves 
are situated higher than the forward curves if the spot rate is rather high (inequal-
ity (33) is fulfilled) and the yield curves are situated lower than the forward 
curves if the spot rate is rather low (inequalities (35) and (36) are fulfilled). The 
yield curves and the forward curves can intersect for intermediate values of spot 
rates (inequality (34) is fulfilled). 

 Figure 6 shows an influence on the yield curves and the forward curves of 
parameter x – the lower boundary of the spot rate process r(t). In this case the GM 
model is considered with parameters k = 0,2339, θ = 0,0808, D = 0,00126, the 
same as CKLS (1992) (see Table 2), λ = 0. The graphs of the yield curves and the 
forward curves are presented for r = 0,06 and several values of term to maturity   
τ = 0; 2; 10; 20 years. From these graphs one can see a week dependence the 
yield rate and the forward rate on x. The graphs are flat except for a small interval 
of values of parameter x near limiting values x = θ – D  = 0,045. Such behavior 
of the yield curves and the forward curves via parameter x confirm the Property 9. 
This means too that for used set of parameters such models as the CIR model and 
the Vasiček model are practically equivalent.  

Figure 7 shows an influence on the yield curves and the forward curves of 
parameter λ – a parameter that determines the risk premium value. In this case 
also as in previous case the GM model is considered with parameters k = 0,2339, 
θ = 0,0808, D = 0,00126, the same as CKLS (1992) (see Table 2), the short rate 
r = 0,06, the term to maturity τ = 2 years,  and the parameter x takes several 
values, x = 0; 0,03; 0,05. As it was maintained in the Property 10 with increasing 
of parameter λ the yield curve Y(B) and the forward curve F(B) monotonic de-
crease.  

 
Conclusion 

 
Thus in this paper an attempt of detailed description of every possible shapes of 
term structure is made for the class of the one-factor affine interest rate models 
for that the solutions in closed form are attainable. As basis the general model 
(GM) with arbitrary lower boundary for short interest rate is taken. It was for-
mulated ten Properties of the yield curves and the forward curves. The results 
for well-known models the CIR model and the Vasiček model are obtained as 
particular cases. In particular it is found that there is four modes for yield curve 
shapes. The empirical evidences are presents that are based on the parameter es-
timates for 13 different models of real time series of yield interest rates. The 
numerical results are presented in form of tables and graphical charts. 



 

Figure 6. The yield curves (solid line) and the forward curves (dashed line) for the CKLS 
(1992) parameters of models for the spot rate r = 0,06 as functions of parameter x.  

The designations y(τ) and f(τ) are pointing to  the curves for  
different terms to maturity τ = 0; 2; 10; 20 years. 

 

Figure 7. The yield curves (solid line) and the forward curves (dashed line) for the CKLS 
(1992) parameters of models as functions of parameter λ for the spot rate r = 0,06 and the 

term to maturity τ = 2. The designations y(x) and f(x) are pointing to  the curves for  
different barriers x = 0; 0,03; 0,05.  

 
 

0,060

0,065

0,070

0,075

0,080

-0,05 -0,03 -0,01 0,01 0,03 0,05x

y(0) = f(0) y(2) f(2) y(10)
f(10) y(20) f(20)

0,04

0,05

0,06

0,07

0 2 4 6 8 10 12λ

y(0) f(0) y(0,03) f(0,03) y(0,05) f(0,05)



APPENDIX  
 
Proof of Property 1. The equation (20) follows from (16) and (19) if take 

in account that В(τ) → 0 and В(τ)/τ  → 1 follow from (18) as τ → 0.  
The equation (21) for y(τ) takes place because B(τ)/τ → 0 follows from 

(17) as τ → ∞. Under proof (21) for the forward rate it is convenient to present 
(19)  according to (13) in the form 
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It follows from properties of functions B(τ) determined by formula (8) that the 
derivative dB/dτ → 0 as τ → ∞. Then from equation (6) one can see that the 
multiplier under r in relation for f(τ) tends to zero as τ → ∞, that is as τ → ∞ 
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τ
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To determine dA/dτ one can use the relation (9). This result in to an expression  
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Last term tends to zero as τ → ∞ because in this case dB/dτ → 0 and the func-
tion B(τ) remains limited. This establishes the remaining equality in (21).  

Proof of Property 2. The form of the term structure function B(τ) in 
neighborhood of value τ = 0 is determined by the relation (18). The expressions 
(22) and (23) one can obtain if to use in the representations (16) and (19) of 
functions y(τ) and f(τ) the relation (18) and the denotation (10). 

Proof of Property 3. Let us show that  f*(x)  monotonic increases. For 
short designate  ϑ  ≡ θ − x, ω  ≡ 2λkD and 

 
G(ϑ ) ≡ 2D + ω  + kϑ  − ϑ+ϑ+ω kDk 4)( 2 . 

 
Then according to (10) and (21) function  f*(х)  can be expressed in the form  

 



f*(x)  ≡  f*(θ − ϑ )  = θ − ϑ  G )(ϑ /2D. 
 

The derivative of this function  
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is positive for every D > 0, k > 0 and ω ≥ 0 if is held the inequality  
 

4D(2D + ω) > (2D + ω) G )(ϑ , 
 

which in its turn is equivalent to inequality that easily to verify  
 

(2D + ω) ϑ+ϑ+ω kDk 4)( 2  > ω 2 + (2D + ω) kϑ . 
 

Thus the function f*(х) monotonic increases as x increases. The right-hand 
equality in (24) is verified by simple substitution x = θ  to (21). The left-hand 
inequality in (24) one can obtain if to compute the limit 

−∞→x
lim f*(x). For the 

proof the expression (25) it is necessary to solve the transcendental equation  
 

θ − v G )(ϑ /2D = 0.  
 

The analysis shows that this equation may be transformed to quadratic  
 

(D − kθ + ω) 2ϑ   − θ (2D + ω)ϑ  + θ 2D = 0 
 

and required solution *ϑ  = θ − x* is lesser root of this quadratic equation that is 
determined by expression (25).  

Proof of Property 4. The first necessary condition (26) will be held 
according to Property 3. Now it remains to clear up for that x the inequalities 
(27) are held. For this one considers the representations (22) and (23). In order 
to the functions y(τ) and f(τ) increase in the neighborhood of value τ = 0 it is 
necessary to fulfill the demand: the coefficients under τ in (22) and (23) for r = 0 
must be positive. It turned out that for both representations this demand reduces 
to the same inequality 

 
θ [k + 2λkD/(θ − x)] − 2λkD > 0 

that is 

.022 >
−θ

λ+λ−θ
x

kDkDk                                      (A.1) 



 
When kθ ≥ 2λkD this inequality is held for every x < θ. Under this in the 

case kθ ≥ D + 2λkD the first necessary condition (26) is held. However in the 
case 2λkD ≤ kθ ≤ D + 2λkD the first necessary condition (26) is broken. There-
fore in according to Property 3 the condition of the mutual fulfillment of ine-
qualities (26) and (27) for this case will be inequality x ≥ x*.  Finally in the case 
kθ < 2λkD the inequality (A.1) is held for 

 

.
2

**
2

θ−λ
θ−≡>
D

xx  

 
Now for the proof of Property it is sufficient to show that x* ≥  x**, that is 
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This inequality is held if  
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For this it is necessary that kθ ≤ D + 2λkD. However this inequality just is the 
condition of determination of value x* by the expression (25) and the necessary 
condition (26) is held. 

Proof of Property 5.  
The first statement of Property 5 follows from the fact that the second de-

rivative of forward curve F(B) (see the presentation (30)) is always negative. 
This is a sufficient condition of the concavity.  

The necessary condition of existence of maximum F′ (B*) = 0 gives the 
formula (32).  However the maximum will exist in fact if only B*∈  (0, V −1), 
that is 

0 ≤ B* = 




 +−

−
−θ vV

xr
xk

vV2
1  ≤ V − 1.                     

 
This results in to the inequality (31). 
Proof of Property 6. For this let us introduce an intermediary function – 

secant c(B): 
с(В) = r +[k(θ − x) − V(r − x)]B,    0 ≤ В ≤  V − 1.                    (A.2) 

 



The secant { с(В), 0 ≤ В ≤  V − 1}  is a straight-line segment that connects the 
point (0, r) (the initial point of the curves Y(B) and F(B) as B = 0) with the point 
(V −1, х + Dxv 2)( −θ ) (the limiting point of curves Y(B) and F(B) as B = V −1).  

In according to Property 5 the forward curve is the concave function there-
fore the inequality F(B) > с(В) for every B ∈  (0, V −1).  

The shape of the yield curve Y(B) (see the presentation (29)) essentially de-
pends on the value of parameter r.  

If the yield curve Y(B) is the concave function on the interval 0 < В < V − 1 
then at every point of this interval the inequality Y(B) > с(В) must be fulfilled 
and on the ends of interval the equalities Y(0) = с(0) and Y(V − 1) = с(V − 1) are 
held. In order to these conditions be fulfilled it is necessary to be valid the ine-
qualities 
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Here the functions Y(B) and с(В) are determined by expressions (29) and (A.2) 
respectively. Computing the derivatives and demanding the fulfillment of ine-
qualities (A.3) give the conditions on values of parameter r stated in Property 6. 

The explicit form of first inequality (A.3) is found rather simple. Represent-
ing the expression (29) with accuracy О(B2) for small B we  obtain that  

 
Y(B) = r + ½ [k(θ − x) − (V − v)( r − x)]B + O(B2).                  (A.4) 

 
From this and from (A.2) one finds as B → 0 that the first inequality (A.3) re-
duces to the form  
 

k(θ − x) − (V − v)( r − x) > 2 VDxvrx ]/)([ 2−θ+−  
 
and this is equivalent to inequality  
 

r  >  x + k(θ − x) /(v + V),                                     (A.5) 
 
if to use the property vV = kD/(θ − x). 

It is more complicated to obtain the second inequality in (A.3) in explicit 
form because in the point B = V −1 the derivative of the yield curve Y(B) is un-
bounded in absolute value. Therefore for proof of Property it is sufficient to 
know only the sign of derivative but not its value. The derivative of expression 
(29) with respect to B has a form 
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Note that as B → V −1 

 
[ln(1 + vB) – ln(1 – VB)] → ∞,    [ln(1 + vB) – ln(1 – VB)]2 (1 – VB) → 0. 

 
Therefore the first term in (A.6) will tend to zero and the second term will 

increase unbounded in absolute value and will be negative or positive in 
dependence on a sign of the numerator of second term of equation (A.6) at the 
point  B = V −1  

(r – x)/V – (θ  −  x)2ln(1 + v /V)/D. 
 

If the function Y(B) is concave then this expression must be positive that results 
in to inequality  

r  >  x + DVvxV )/1ln()( 2 +−θ .                               (A.7) 
 
Thus if the yield curve Y(B) is concave then it is necessary simultaneously 

to fulfill the inequalities (A.5) and (A.7). That is  
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Note that for every z ∈  (0, 1) the inequality  
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is valid. Assuming  z = v/V  in this case we obtain that 
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It means that two inequalities (A.8) reduce only to one (second) inequality 

and first statement of Property 6 is proved. 



 If the yield curve Y(B) is the convex function on the interval 0 < В < V −1 
then at every point of this interval the inequality Y(B) < с(В) must be fulfilled 
and on the ends of interval the equalities Y(0) = с(0) and Y(V −1) = с(V −1) are 
held. It means that both of the inequalities (A.3) must be fulfilled in reverse side 
that is both of the inequalities (A.8) also must be fulfilled in reverse side. In this 
case two inverse inequalities (A.8) reduce only to one (first) inverse inequality 
and second statement of Property 6 is proved. 

At last if first inequality in (A.3) (or equivalent (A.8)) is fulfilled and sec-
ond inequality is inverse then the curve Y(B) and the secant c(B) intersect into 
interval 0 < В < V −1 and the yield curve Y(B) have a point of inflexion Bi. Then 
the yield curve Y(B) is the concave function on the interval 0 < В < Bi because 
the yield curve intersects the secant top-down. And the yield curve Y(B) is the 
convex function on the interval Bi < В < V −1. This proves third statement of 
Property 6. 

Proof of Property 7. If the yield curve Y(B) is the concave function of B on 
interval 0 < В < V − 1 then it can have a maximum on this interval. From Property 
6 we have that the yield curve Y(B) is a concave function on interval 0 ≤ В ≤ V −1 
if the value of short rate r meets the inequality 
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Thus function Y(B) has a maximum if the derivative Y′ (B) > 0 at the point 

B = 0 and the derivative Y′ (B) < 0 at point B = V − 1. From Property 6 the second 
condition in this case is held. From (A.4) the first condition will be held if  

 

k(θ − x) − (V − v)( r − x) > 0,  that is .
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Note that for every z ∈  (0, 1) the inequality  
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is valid. From this assuming  z = v/V  in this case we obtain that 
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Therefore there are really the points B of existence of maximum Y(B) and 

the yield curve Y(B) has the maximum if r meets the inequalities 
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This proves the first statement of Property 7.  
On the other hand in order to the function Y(B) has a maximum at some 

point B0 it is necessary that Y′ (B0) = 0. Note that in this case B0 = B(τ0) where τ0 
meets an equation y′ (τ0) = 0. From (11) and (13) we have for τ = τ0 

 

y′ (τ) = )]()([1)()(
2 τ′−τ′

τ
+

τ
τ−τ− ABrArB  = – 

τ
1  y(τ) + 

τ
1 f(τ) = 0, 

 
that is y(τ0) = f(τ0). However this is equivalent to equality Y(B0) = F(B0). So the 
maximum of the yield curve Y(B) is reached at the point B0 of intersection of 
curves Y(B) and F(B). This proves the second statement of Property 7.  

Because from Property 5 and (A.9) the forward curve F(B) have a maxi-
mum at point B* on interval (A.10) and also the functions Y(B) and F(B) are 
convex and from Property 2 F′ (0) > Y′ (0) then it is necessary that the intersec-
tion will be on ascending branch of  forward curve, that is B* < B0. This proves 
the last third statement of Property 7. 

Proof of Property 8. The GM model changes into the Vasiček model when 
the parameter x → − ∞. In this case the probability density functions of gamma 
distribution (37) and (38) change into the density function of normal distribution 
(see Ilieva, 2000). Because the bound between the remaining modes is equal 1 
and the expectation of the random variable ζ = (r – x)/(θ – x) is equal 1 too then 
in view of symmetry of normal distribution  

 
Prob[mode A] = Prob[ζ > 1] = Prob[mode D] = Prob[ζ< 1] = 0,5. 
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