О ВЫБОРЕ УГЛОВОГО ДИАПАЗОНА ИЗМЕРЕНИЙ ПРИ ИССЛЕДОВАНИИ ТОНКИХ ПЛЕНОК С ПОМОЩЬЮ ПРИЗМЫ СВЯЗИ

А. Б. Сотский¹, L. M. Steingart², С. О. Парашков¹, Л. И. Сотская³

¹Могилевский государственный университет им. А. А. Кулешова, Могилев, Беларусь
²Metricon Corporation, Pennington, New Jersey, USA
³Белорусско-Российский университет, Могилев, Беларусь E-mail: ab_sotsky@mail.ru

При оптическом контроле параметров тонких пленок распространен метод, основанный на анализе угловой зависимости энергетического коэффициента отражения лазерного пучка от призмы связи. В нем используется явление нарушенного полного внутреннего отражения света, что позволяет обеспечить значительную длину взаимодействия излучения с исследуемой пленкой, и, как следствие, более высокую определения показателя преломления n, точность показателя поглощения k и толщины пленки d по сравнению с эллипсометрией. выполнены Соответствующие измерения ΜΟΓΥΤ быть автоматизированной установке "Model 2010/M Prism Coupler" [1].

Для обработки указанных измерений эффективен метод наименьших квадратов. В нем осуществляется минимизация целевой функции

$$I(p_i) = \sum_{i=1}^{m} \left[\varphi_j - f_j(p_i) \right]^2 \frac{1}{2}, \tag{1}$$

где ϕ_j - экспериментальные данные для коэффициента отражения пучка от призмы связи при m углах падения, $f_j(p_i)$ - теоретическая модель коэффициента отражения, зависящая от параметров p_i ($p_1=d$, $p_2=g$, $p_3=n$, $p_4=k$, где g - толщина буферного слоя между призмой связи и пленкой). Однако практика показывает, что на восстанавливаемые значения p_i существенно влияет угловой диапазона измерений (a,b) (указанный диапазон мы относим к переменной β , равной безразмерной проекции волнового вектора оси падающего пучка на основание призмы связи). Отмеченная особенность связана с приближенным характером модели $f_j(p_i)$ и неизбежными ошибками измерения величин ϕ_j , равными $\delta\phi_j$.

Для выбора оптимального диапазона измерений (a,b) предлагается критерий, основанный на идее минимизации влияния ошибок $\delta \phi_j$ на решение обратной задачи. В нем используется неравенство

 $\left| \delta p_i \right| \leq \max \left| \delta \phi_j \right| \cdot E_i$, где $E_i = \sum_{j=1}^m \left| \sum_{k=1}^4 M_{ik}^{-1} \, \frac{\partial f_j}{\partial p_k} \right|$, M_{ik}^{-1} — матрица, обратная матрице ошибок

$$M_{ik} = \sum_{j=1}^{m} \left\{ \frac{\partial^{2} f_{j}}{\partial p_{i} \partial p_{k}} \left[\varphi_{j} - f_{j}(p_{i}) \right] - \frac{\partial f_{j}}{\partial p_{i}} \frac{\partial f_{j}}{\partial p_{k}} \right\},\,$$

вычисляемой после минимизации (1). Суть критерия состоит в том, что в качестве решения обратной задачи принимается то значение p_i , при котором коэффициент E_i достигает минимума за счет выбора оптимального диапазона (a,b). Экспериментальное исследование ряда пленок показало, что каждому из параметров p_i соответствует свой оптимальный диапазон (a,b).

Критерий иллюстрируется таблицей. В ней представлены результаты восстановления параметров пленки SiO_x , напыленной на кремниевую подложку. В эксперименте использована длина световой волны 632.8нм. Угловой диапазон измерений охарактеризован параметром $\Delta\beta = b-a$. Центр этого диапазона 0.5(b+a)=1.454397 соответствует резонансному возбуждению основной вытекающей моды

Таблица

Δβ	поляризация	d , HM	n	$k \cdot 10^4$
0.370	S	3027.45	1.45816	-0.45
	p	3027.90	1.45861	10.9
0.170	S	3015.26	1.45796	2.81
	p	3015.23	1.45893	3.68
0.025	S	2989.02	1.45807	2.35
	p	2083.54	1.45908	2.44

Из табл. видно, что восстановленные параметры существенно зависят от $\Delta\beta$. При широком диапазоне $\Delta\beta=0.37$ коэффициент k получился отрицательным, что противоречит физическому смыслу. Значения $\Delta\beta=0.17$ и $\Delta\beta=0.025$ являются оптимальными для восстановления толщины пленки и ее комплексного показателя преломления, соответственно. Некоторое расхождение восстановленных значений n для волн s и p поляризации свидетельствует об анизотропии пленки.

1. Metricon Corporation: http://www.metricon.com.