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Abstract 
 

This paper considers a problem of asset pricing for case when the short-term interest 
rate process does not have the markovian property. In this case the price can be determined 
also by state variables some of that are not observable. In the same time from the practical 
point of view, the mathematical expression for the asset price is acceptable for the partici-
pants of the market if it includes only observable variables. Therefore procedure of elimina-
tion from this mathematical expression of all not observable components of vector of state 
variables should be developed. In stochastic problems it is assumed to eliminate not observ-
able indexes by taking the conditional expectation. Such approach is used in this paper. It is 
supposed that the interest rate process is differentiable but its mathematical derivative of 
some order is a diffusion process. In this case the values of this process at future times de-
pend on values of process and its derivatives at present time. It means that there is a depend-
ence on the process path.  It is derived the expression for determination the asset price under 
these conditions. In this relation to usual formula for price some multiplier is added that de-
pends on stochastic properties of mathematical derivatives of interest rate process. Extension 
of the Vasicek model on the differentiable processes is introduced. The comparison the bond 
price for this extension with bond price of standard Vasicek model is made. 

The plan of paper is as follow. In Introduction the problem substitution is made and the 
state variables are determined. In Section 2 the no arbitrage condition for multi-factor model 
of term structure is given. The equation for the asset price at general multi-factor model is 
derived in Section 3. In next section it is shown as to eliminate not observable components of 
state variables. Section 5 contains the analysis of differentiable short-term interest rate proc-
esses. Special case of interest rate processes with one derivative is given in detail in Section 
6. Equation for the asset price when the short-term interest rate process is differentiable is 
derived in Section 7. In Section 8 the extension of the Vasicek model is considered.  
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1. Introduction 
In multi-factor models it is supposed that the world state, on which the asset price Р 

depends, is determined by several quantities, which can be various quoted market indexes, 
and also connected with them not observable variables. Let's designate a vector composed of 
these quantities, through R ∈  RM, where 1 ≤ m ≤ М, and М is complete number of market 
variables, on which the asset price depends, but m – number from these variables, which are 
quoted (are observed) in the market. In one-factor models of term structure of interest rates  
М = m = 1, i.e. the vector R is transformed in single variable and this single variable of state 
is the short-term (instant) interest rate.  

From the practical point of view the mathematical expression for the asset price is ac-
ceptable for the participants of the market, if it includes only observable variables. Therefore 
procedure of exception from this mathematical expression of all not observable components 
of vector of state variable should be developed.  

Something similar takes place and in one-factor model of term structure of the interest 
rates. The price of the discount bond with date of maturity Т at the moment of time t is de-
termined as its nominal value, discounted (in environment adjusted to risk) to the moment t, 
i.e. on an interval of time [t, Т]. However the value of the short-term interest rate r(t) = r is 
known only at the moment t, and its values at the future moments of time up to the moment Т 
are unknown. The formula obtained in these conditions for the price of the bond and accept-
able for the participants of the market is simply a conditional mathematical expectation (on 
probability measure adjusted by risk) of discounted nominal value on not observable future 
values of the short-term interest rates {r(s), t < s ≤ T} under condition that r(t) = r. At use of 
the objective probability measure, generally speaking, the same occurs only nominal value is 
weighed in time by factor, that is dependent from the market price of risk (see Vasicek, 
1977). Thus in this case actually the exception of values not observable variables from 
mathematical expression emanates by expectation of discounted nominal value of the bond 
on these not observable variables. This procedure can be accepted also in multi-factor model 
under determination of the price of financial asset. Only in this case not observable variables 
will be not only the future values of all M of state variables, but also the present value those 
(M − m) state variables, which are not observed at the moment of time t. Such procedure ac-
tually is  a projection of function of the price given in “complete” space of state variables on 
subspace of the observable state variables. The operator of such projecting in a case of one-
factor model is the calculation of conditional mathematical expectation. In this sense further 
we shall name as a complete asset price the mathematical expression for the asset price given 
in “complete” space of state variables, and as an asset price − its projection on subspace of 
observable state variables.  

Let's assume, that the vector R changes over time satisfies to the following stochastic 
differential equation  

 
dR = µ (R, t) dt + σ  (R, t) dW(t),                                                             (1) 

 
where µ (R, t) is a М-vector of drift of state variables, σ (R, t) is (М × q)-matrix them volatil-
ities, and dW(t) − vector of increments of the q-dimensional standard Wiener process with 
mutually independent components.  

Let's assume further, that the complete asset price can be presented as the determinis-
tic function from R, t and Т, and this function is differentiable in respect to all variables nec-
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essary number of times. We hereinafter assume, that an asset does not pay any intermediate 
payments, and all payments are made in the maturity date Т. Then the function of the com-
plete asset price Р(R, t, Т) ≡ Р(Т) will be by the formula Ito to change during time according to 
the stochastic differential equation 

 
dР(Т)  = Р(Т) µ (Т) (t) dt + Р(Т) σ  (Т) (t) dW(t),                                            (2) 

 
in which scalar factor of drift µ (Т) (t) and q-vector-row volatilities σ (Т) (t) are brief designa-
tions of the following expressions (the superscript in brackets means that µ (Т) (t) and σ (Т) (t) 
characterize an asset with the maturity date Т, the superscript Т without brackets will mean 
transposition): 
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For definiteness we shall notice that here RP T ∂∂ )(  is a М-vector-row and 2)(2 RP T ∂∂  is 
(М × М)-matrix; tr A − trace of a matrix А. 
 

2. The No Arbitrage Condition for Multi-factor Model of Term Structure 
In the arbitrage theory of the asset pricing a usual way of deriving of the equation for 

determination of the price is the requirement of absence of arbitrage opportunities in the mar-
ket, where n assets are traded that are differing only by the maturity dates Тj, 1 ≤ j ≤ n. Actu-
ally the no arbitrage condition is also the partial differential equation for an complete asset 

price. Further for brevity instead of )( jTP , , )( jTµ
)( jTσ  we shall write accordingly Р(j), 

, )( jµ )( jσ , 1 ≤ j ≤ n.. 
To obtain the no arbitrage condition in this market at first one composes a riskfree 

portfolio of assets and then requires that the yield of such portfolio in accuracy must be equal 
to the riskfree interest rate.  

Let's assume that some investor has composed a portfolio of assets, investing at the 
moment of time t in an assets with the maturity date Тj the value of the size Vj (t) (suppose 
that Vj > 0, if the investor purchases the assets, on which he in date Тj will receive the appro-
priate repayment, and Vj < 0, if the investor issues the obligations, i.e. in date Тj he will be 
obligated to pay the necessary cost). Then complete value of this portfolio at the moment of 
time t will be equal  
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where Nj designates number of assets with maturity date Тj contained in a portfolio at the 
moment of time t. The increment of value of such portfolio for the time interval (t, t + dt) will 
be equal 
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Using equation (2) that determines increment of asset price with maturity date Тj we 

receive stochastic differential equation for value of portfolio as 
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Such portfolio will be riskfree, if the stochastic component of this equation will be equal to 

zero, i.e. ∑ . For the further reasoning it is convenient to introduce n-

vector-row V(t) = (V
=

=
N
j j ttV j

1
0)()( )(σ

1(t), V2(t), ..., VN(t)), (N × М)-matrix ∂ P/∂ R with elements (∂P/∂R)jk =     
= ∂ lnP (j) /∂Rk , 1 ≤ j ≤ N, 1 ≤ k ≤ M, and  (N × q)-matrix σ (t) = (∂ P/∂ R)σ (R, t) with rows   
σ (j)(t), 1  ≤ j  ≤ N, determined by the relation (3). Then a condition that the portfolio will be 
riskfree is the equality V(t)σ (t) = 0. It can be considered as the equation for determination of  
vector V(t) of the investments in a riskfree portfolio. From here it is visible, that a necessary 
condition of existence of a riskfree portfolio is the inequality:  

 
rank σ (t) = min{rank ( RP ∂∂ ), rank σ (R, t)} = ρ < N.  

 
(We do not consider of course uninteresting version when the vector of the investments is 
zero.) So let necessary condition of existence of the riskfree portfolio ρ < N takes place. Let's 
present a matrix σ (t) in the block form (in a case, when ρ < q) 
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where σ 11 represents the nondegenerated block of the size (ρ × ρ). It in our conditions al-
ways can be reached by renumerating of assets. Other blocks are determined in appropriate 
way. According to this representation we shall write down in the block form a vector of the 
investments in the portfolio V(t) = (V1 V2). Then the condition of existence of the riskfree 
portfolio V(t)σ (t) = 0 takes a form  

 
.0,0 222121212111 =+=+ σσσσ VVVV                                             (6) 

 
From here it follows that between V1 and V2 there should be following linear dependence  

 
V1 = − V2σ 21(σ 11) −1,                                                                                  (7) 

 
and the vector V2 satisfies the equation  

 
V2 (σ 22 − σ 21(σ 11)−1σ 12) = 0,                                                                     (8) 

 
which has a family of the not zero decisions as a matrix (σ 22 − σ 21(σ 11)−1σ 12) is degener-
ated. Thus the variety of riskfree portfolios is determined by variety of the decisions V2 of the 
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equation (8), each of which uniquely determines appropriate V1 by the formula (7), and also 
whole vector V(t). In a case, when ρ = q, in a matrix (5) blocks σ 12 and σ 22 are absent, the 
second equation in (6) and equation (8) also are absent, and as V2 can be chosen any not zero 
(N − ρ)-vector.  

The no arbitrage condition requires, that yield of any riskfree portfolio in accuracy 
should be equal to the riskfree interest rate, which value at the moment of time t we shall des-
ignate by a symbol r(t). As a rule, the riskfree interest rate is one of a component of a vector 
of state variables R(t).  

From relations (4) and (6) follows, that the equation of dynamics of value of a riskfree 
portfolio looks like 
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Here we again for brevity of records used the block structure of a vector µ (t)Т = (µ (1) (t)       
µ (1) (t) ... µ (N) (t))T = (µ1

Т µ 2
Т). In order to there was no arbitrage should be satisfied condi-
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If to enter the vector-columns r1 and r2 with identical components r(t) in each of them with 
dimensions accordingly ρ and (N − ρ) then last expression in (10) can be written down as  
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Then from (9) and (10) the equality will follow 

 
V2[µ2 − r2 − (µ1 − r1)(σ 11)−1σ 12] = 0,                                                       (11) 

 
which should be carried out for any riskfree portfolio, i.e. for any not zero vector V2 from va-
riety that has been determined by the equation (8). This implies that every component of vec-
tor µ2 − r2 − (µ1 − r1)(σ 11)−1σ 12  should be equal to zero. This requirement is equivalent to a 
fact that for any j, that appropriates a component Vj(t) of vector V2, the equality takes place 
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where σ  (j)

12 designates a row of a matrix σ 12 with number j. From here follows, that the no 
arbitrage condition is carried out, if a matrix 
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has a rank ρ. In turn, it is equivalent to that the first line of a matrix (12) is a linear combina-
tion others ρ of lines. The elements of a matrix (12) are determined by equality (3), and σ k (j) 
is k-th component of a row σ (j)(t). From here we obtain the no arbitrage condition in a final 
form  
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Here λk(R, t), generally speaking, can be any functions not dependent from j. It is necessary 
to notice, that the number of summands in the right part (13) is equal ρ  ≤ q, i.e. not necessar-
ily coincides with number q an independent stochastic component of the equation (1), as ρ  is 
a rank of a matrix (5), composed from rows σ (j) (t), determined by equality (3). From the 
above analysis it does not follow of any recommendations concerning the form of functions 
λk(R, t), therefore it is considered, that they should be given from any other reasons and are 
the same external factors, as functions of drift and volatility in the equation (1). It is accepted 
to name function λk(R, t) as the market price of risk connected with influence of uncertainty, 
produced stochastic component with number k. 
 

3. Equation for the Asset Price at General Multi-Factor Model 
The equality (13) can be considered as the partial differential equation for the asset 

price with maturity date Тj if the explicit forms functions µ (Т) (t) and σ (Т) (t) from equality (3) 
will be substituted in it. Let's enter for compactness of record ρ-vector-column λ(R, t) = 
(λ1(R, t) λ2(R, t) ... λρ(R, t))Т. Then the equality (13) can be written down as (for ρ  = q)  
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The equation (14) is the equation for definition of the asset price with maturity date Т in gen-
eral statement for multi-factor model. To the equation (14) it is necessary to add a boundary 
condition Р(R, Т, Т) = Ψ(Т), which determines payments in maturity date (execution of the 
contract) and reflects stipulated before a condition of the contract. 

Unfortunately, the solution of the equation (14) in the explicit form for a general case 
can not be written down. It is possible to speak only about the solution in an analytical form 
for some special cases. Let's consider two of them. 

1) The volatility matrix σ (R, t) does not depend on R, vector functions µ (R, t) and 
σ(R, t)λ(R, t) are linear in respect to R. In this case these functions are set by relations  
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σ (R, t)σТ(R, t) = δ,    µ (R, t) = β + α R,   σ (R, t) λ(R, t) = η + ξ R,       (15) 
 

where α, β, δ, η, ξ  are vectors and matrixes of the appropriate sizes, which in general case 
can depend on time t. We believe, that the riskfree interest rate r(t) is determined by some 
combination of components of vector R or is one of these components. Therefore we shall 
enter also M-vector-row a such that аR(t) = r(t). (If r(t) is one of a component of a vector R 
then the components a are zero with one exception: a component with number, which the 
riskfree interest rate r(t) has in a vector R, is equal to unit.) Then the decision of the equation 
(14) is the function 

 
Р(R, t, Т) = Ψ(Т) ехр{А(t, Т) + В(t, Т)R},                                                (16) 

 
where scalar function A(t, Т) and M-vector-row B(t, Т) are found from the following differen-
tial equations (stroke designates derivative on time) 

 
А′ = В (η − β) − ½ В δ ВТ,                                                                         (17) 

 
В′ = а + В (ξ  − α) ,                                                                                   (18) 

 
with boundary conditions A(Т, Т) = 0 and B(Т, Т) = 0.  

2) Matrix function σ (R, t)σ Т (R, t) and the vector functions µ (R, t) and σ (R, t)λ(R, t) 
are linear functions in respect to R, i.e. 

 
σ (R, t)σТ(R, t) = δ + RDγ D, µ (R, t) = β + α R,   σ (R, t) λ(R, t) = η + ξ R,    (19) 

 
where α, β, δ, γ, η, ξ  are vectors and matrixes of the appropriate sizes, which generally can 
depend on time t. The symbol D designates the transformation of a vector in a diagonal ma-
trix, for example 
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In a considered case the function (16) also is the decision of the equation (14), however in 
this case  scalar function A(t, Т) and М-vector B(t, Т) are found from the following differen-
tial equations 

 
А′ = В(η  − β) − ½ Вδ ВТ,                                                                         (21) 

 
В′ = а + В(ξ  − α) − ½ BγDВD,                                                                   (22) 

 
with former boundary conditions A(Т, Т) = 0 and B(Т, Т) = 0.  

These cases are widely known for the discount bonds paying a unit in date of maturity 
(Ψ (Т) = 1) from papers, that were devoted the term structures for one-factor models with 
constant factors, when М = q =1, a = 1, the functions A and B in (21) − (22) are scalar, and 
the parameters α, β, δ, γ, η, ξ  transform to constants. The explicit form of functions A(t, Т) 
and B(t, Т), when γ = 0 и ξ  = 0, was obtained in famous paper Vasicek (1977); in turn, the 
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solution for the case δ = 0 и η = 0 is found in widely known paper Cox, Ingerssol and Ross 
(1985); when all six parameters are non zero the decision is brought in Medvedev and Cox 
(1996). The detailed comparative analysis of functions A(t, Т) and B(t, Т), and also probabil-
ity properties of processes of the short-term interest rate r(t) determined by these three mod-
els, contains in Ilieva (2000). 

The procedure of reception of the solution of the equation (14) in the considered cases 
is reduced that the equation Riccati (for vector B in a case (22)) at first should be solved. Un-
fortunately, in an analytical form it can be solved only in a scalar case for constant parame-
ters. For more complex situations it is necessary to find the solution of the Riccati equation 
by numerical methods. The function A, if B is known, is determined by simple integration, 
that however can result in integrals which are not calculated explicitly. Below we shall con-
sider one more case, when the decision of the equation (14) can be found in the closed form 
for a practically important case. 

 
4. Elimination of not Observable Components of State Variables 
The solution (16), that is found by described way, determines the “complete” asset 

price. It would be acceptable for the participants of the market, if all components of a vector 
R are observable. If some components of this vector are not observed in the market (earlier 
we determined them number as (М − m) last component of a vector R), it is necessary to 
eliminate them from solution. For it we must still to find distribution of probabilities of these 
components and to calculate conditional mathematical expectation of the solution (16) on 
these components at the fixed observable variable condition. This will give the formula for 
the asset price acceptable for the participants of the market. 

Let's consider this procedure for one important case of normal distribution of a vector 
of state variables R(t). It means, that density of probabilities of a vector R has form 

 

f(R, t) = ( ехр{− ½ (R  − Е)) 2/1
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where Е = E(t) is a vector of expectations of state variables, and Σ = Σ(t) − matrix of their 
covariance. For convenience of the subsequent deriving we shall split the vector R on two 
parts: observable G = (R1 R2 ... Rт)Т and not observable Н = (Rт+ 1 Rт+ 2  ... RМ)Т. According 
to this we shall present in the block form a vector Е and matrix Σ:  
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where Еg and Еh are mathematical expectations observable and not observable components 
respectively, Σg and Σh − according to their matrixes of  covariance respectively, and Σgh and 
Σhg are matrixes mutual covariance of vectors observable and not observable components. 
Then density of probabilities of state variables can be written down in the form 
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This density of probabilities for our purposes is convenient to present in the form of product 
unconditional (for G) and conditional (for H at fixed G) densities  
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where for brevity the designation is used  
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In considered case it is possible to write down the complete asset price (16) as 
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where a vector B is presented in the block form according to splitting of a vector of state vari-
ables into two parts G and H.  

Now for deriving of the formula for asset price, which could be used in the market, it 
is necessary to calculate conditional expectation of function Р(G, Н, t, Т) on distribution of a 
vector H at the fixed vector G. Then we shall have 

 
Р(G, t, Т) = Ψ(Т) ехр{А(t, Т) + ВgG} ЕG,t{ехр(ВhH)} = 
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At last, if the observable and not observable market indexes are statistically independ-

ent among themselves (in our case it means, that Σgh = 0 and Σhg = 0), then we shall obtain  
 

Р(G, t, Т) = Ψ(Т) ехр{А(t, Т) + ВgG}× ехр{Вh hE + ½ Вh hΣ Вh
Т}.        (30) 

 
The not observable parameters in this formula determine last multiplier. By this mul-

tiplier the obtained formula differs from the formulae of the market asset price that are known 
from the literature,. 

Let's remind, that the vector G is composed by observable market parameters, i.e. G = 
(R1 R2 ... Rm)T. Thus in this formula for the price are used either the functions determined by 
accepted model (when it are supposed with normal distribution of state variables), or observ-
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able market parameters R1, R2, ... Rm. So at the given model of evolution of market indexes it 
can be used in real conditions.  

 
5. Differentiable Processes of the Short-Term Interest Rates 
In overwhelming number of cases the stochastic models of dynamics of the short-term 

interest rate are based on processes with independent increments (diffusion processes), which 
are continuous non differentiable Markov processes and are described by the equations of 
form (1), when the vector of a variable condition R(t) degenerates in single variable r(t). At 
the same time, the empirical evidences speak, that the real processes of the interest rates not 
always have Markov properties. This problem was discussed in many papers from different 
positions, that naturally required new ways of construction of models of dynamics of the 
short-term interest rate. We shall assume here the model offered in Medvedev (2000). The 
idea of this model is based on the assumption, that process of the short-term interest rate are 
differentiable (М − 1) times, and its (М − 1)-th (mathematical) derivative is diffusion process 
satisfying to the appropriate stochastic differential equation.  

In the considered case to obtain the equation for determination of the asset price ad-
mitting solution in the explicit form, we shall consider the linear stochastic differential equa-
tion of the order М in respect to r with volatility that is non dependent from r and continuous 
determined factors, i.e. 

 
dr(М− 1)(t) − аМ−1(t)r(М− 1)(t) dt − ... − а0(t)r(t) dt = b(t)dt + σ (t) dW(t),   (31) 

 
so continuous mathematical derivatives r(k)(t), 0 ≤ k ≤ М − 2, have differentials dr(k)(t) = 
r(k+1)(t) dt, and mathematical derivative of the order (М − 1) has stochastic differential 

 
dr(М− 1)(t) = аМ−1(t)r(М− 1)(t) dt + ... + а0(t)r(t) dt + b(t)dt + σ (t) dW(t),   (32) 

 
Let's notice, that at σ (t) ≡ 0 equations (32) become the homogeneous ordinary differential 
equation for the determined function, which has М derivative 

 

0)()()(... 01 =−−− trta
dt
drta

dt

rd
M

M
.                                                       (33) 

 
It is possible to present a general solution of the equation (33) as 

 

r(t)  = ,         s ≤ t,                                                     (34) ∑
−

=

1

0

)( )(),(
M

k

k
k srstu

through values of process r(t) ≡ r(0)(t) and its mathematical derivatives r(k)(t), 1 ≤ k ≤ М −1, at 
the initial moment of time s, and also some partial solutions uk(t, s), appropriate to a special 
set of the initial conditions: r(k)(s) = 1, r(j)(s) = 0, for all j ≠ k. Let us assume now, that the val-
ues {r(k)(s), 0 ≤ k ≤ М −1} are the random variables. Then the function determined (34) will 
have the continuous (in square mean) mathematical derivative r(k)(t) up to the order (М − 1) 
inclusive and will be the unique solution of the homogeneous stochastic equation (31) with 
the random initial conditions {r(k)(s), 0 ≤ k ≤ М −1}.  

The decision of the stochastic differential equation (31) with the zero initial conditions 
is determined by the formula (see Øksendal, 1998) 
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r(t)  = ,      s ≤ t,                                                       (35) ∫
t

s

sdWsstu )()(),( σ

 
where for any fixed s the function u(t, s) of variable t, t ≥ s, is the solution of the homogene-
ous differential equation (33) with the initial conditions 

 
u(s, s) = 0, u(1)(s, s) = 0, ..., u(М− 2)(s, s) = 0, u(М− 1)(s, s) = 1. 

 
Thus, if to take the solution (35) of equations (31) with the zero initial conditions 

{r(k)(s) = 0, 0 ≤ k ≤ М −1} and to add to it the decision (34) homogeneous equations (33), 
then the obtained sum will give the solution of the equation (31) with the initial conditions 
{r(k)(s), 0 ≤ k ≤ М −1}. 

For use of this solution under deriving of the equation of determination of the asset 
price, that admits deriving of the formulas in an explicit form, it is more convenient to write 
the solution of the equation (33) in other form. Let's determine a М-vector of state variables R 
of the short-term interest rate R(t) as follows 

 

R1(t) = r(t),    Rk+1(t) = k

k

dt
trd )(

, 1 ≤ k ≤ М − 1.                                     (36) 

 
In these designations the infinitesimal increments of first (М −1) components of a vector R 
will be determined as follows 

 
dRk(t) = Rk+1(t) dt,    1 ≤ k ≤ М − 1,                                                           (37) 

 
but as under the assumption the last component RМ(t) = r(М−1)(t) satisfies to the stochastic dif-
ferential equation (33), formulae (33), (36) − (37) allow to write instead of the equation (31) 
the following system of  М differential equations of the first order (in differentials) 

 
dR1(t) = R2(t) dt, 
... 
dR М−1(t) = RМ(t) dt,                                                                                    (38) 

 
dRМ(t) = аМ−1(t)R М−1(t) dt + ... + а0(t)R1(t) dt + b(t)dt + σ (t) dW(t). 

 
The solution of this system of the equations is convenient to present in the matrix form. For 
this purpose we shall rewrite (40) as 
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If now for compactness of record of bulky expressions to introduce matrix designations, this 
equation will be written down as 
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dR = α (t)R dt + β (t) dt + δ (t) dW(t),                                                       (39) 
 

where the designations are used 
 

R(t) = ,     β(t)  = ,     δ(t) = ,                     (40) 
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α (t) = .                              (41) 
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It means that equation (39) is appropriate to equation (1) in that µ (R, t) = α (t)R +β(t), 
σ (R, t) = δ (t), however among M components only one has stochastic behavior. The solu-
tion of system (39) with the initial conditions  

 
{Rk(s) = r(k−1)(s), 1 ≤ k ≤ М}                                                                      (42) 

 
in the integrated form is 

 

R(t) = U(t, s)R(s) +  ,                     (43) ∫
t

s

dtU ττβτ )(),( + ∫
t

s

dWtU )()(),( ττγτ

 
where U(t, s) is a fundamental matrix of the solutions of homogeneous system of the ordinary 
differential equations R′ = α R (R′  designates mathematical derivative of  vector R(t) in re-
spect t). 

Let's present some useful properties of a fundamental matrix of the solutions 
 

t
stU

∂
∂ ),(  = α (t) U(t, s),    

s
stU

∂
∂ ),(  = − U(t, s) α (s).    

 
U(t, s) = U(t, τ) U(τ, s)   for any   t, τ, s. 
 
U −1(t, s) = U(s, t),     U(t, t) = I,  I – identity matrix. 
 

det U(t, s) = ехр  ∫
t

s

dττα )(tr
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Besides if the matrix α (t) = α  is independent on t, then the matrix U(t, s) depends only on 
one variable − difference (t − s) = τ but not on two variables, i.e. in this case U(t,s) = U(t − s), 
U(0) = I, U(t + s) = U(t)U(s), U −1(τ) = U(−τ), αU(τ) = U(τ)α. 

Let's address now to the solution (43). As well as it was necessary to expect, because 
of linearity of the equation (31) its solution is the normally distributed stochastic process with 
conditional (at fixed R(s)) expectation and covariance matrix  

 

Е{R(t)|R(s)} = U(t, s)R(s) + ,                                          (44) ∫
t

s

dtU ττβτ )(),(

Vаr{R(t)|R(s)} = .                                      (45) ∫
t

s

dtUtU τττδτδτ ),()()(),( TT

 
At practical applications one takes an interest usually in the processes for that so-

called a steady regime exists, when on the enough large interval of time of process evolution 
its expectation and its covariance have no tendencies to unlimited increase. In this case inte-
grals in equality (44) and (45) should exist at s → − ∞. For this it is necessary that for every t 
a matrix U(t, s) → 0 at s → − ∞. Thus the dependence from R(s) is lost and at limiting transi-
tion we have unconditional expectation and covariance matrix (if they exist) 

Е{R(t)} = ,                                                                      (46) ∫
∞−

t
dtU ττβτ )(),(

 

Vаr{R(t)} = .                                           (47) ∫
∞−

t
dtUtU τττδτδτ ),()()(),( TT

 
Therefore, the problem of solving of the equation (39) turns to a task of  finding of a 

fundamental matrix of the solutions U(t, s). In general case it is impossible to find this matrix. 
However rather simple solutions are derived in that case, when the matrix (41) is independent 
from t, that is the coefficients in the equation (31) are constants. The following formula for 
U(t, s) is fair in this case: 

 
U(t, s) = U(t − s) = VеΛ(t − s) V −1,                                                               (48) 

where 
               

еΛ(t − s) = ,   V = .    (49) 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

τ

τ

τ

Mv

v

v

e

e
e

...00
............
0...0
0...0

2

1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−− 11
2

1
1

21

...
............

...
1...11

M
M

MM

M

vvv

vvv

 
Here {vk, 1 ≤ k ≤ М} are eigenvalues of a matrix α, i.e. roots of the equation det(α − vI) = 0. 
The formulas (48) − (49) are written down for the most simple case, when all eigenvalues are 
various. Let's notice, that for existence of the steady regime for process in this case, i.e. for 
existence of integrals in (46) − (47), it is necessary, that all eigenvalues of a matrix α either 
were negative, or had negative real parts (in case of complex numbers). 
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6. Example. Interest Rate Process Has One Derivative 
Let process of the riskfree interest rate r(t) has mathematical derivative r′ (t), which 

follows to diffusion process 
 

dr′ (t) = а1r′ (t) dt + а0r(t) dt + b dt + σ dW(t),                                      (50) 
 

that has a characteristic polynomial v2 − а1 v − а0 = 0, which roots are 
 

v1,2 = 0
2
11
42

a
aa

+m .                                                                            (51) 

 
In the matrix form the equation (50) takes the form 
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From (51) it follows, that for existence of steady process of the riskfree interest rates it is 
necessary, that the factors а0 and а1 in the equation (50) were negative. The matrixes V and   
V −1 in (48) has form 
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and the fundamental matrix of the solutions is derived in the form 
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Solution of the equation (50) in form (43) is derived as 
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under the initial conditions r(s) and r′ (s) at the moment of time s.  

As follows from (44) − (45), first two terms in (55) form conditional mathematical 
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The explicit forms of elements of a matrix (56) are set by the following equalities 
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Let's notice, that at t → s all elements of a covariance matrix (55) tend to zero, that 

was necessary to expect, as in this case at fixed r(s) and r′ (s) the uncertainty of a state disap-
pears. The formulae for unconditional expectation and covariance matrix in case of negative 
roots v1 and v2 can be derived, if in expressions for these characteristics to pass to a limit at    
s → − ∞. Thus if to take into account that the roots v1 and v2 are connected with coefficients 
of the equation (50) by relations v1v2 = − а0, v1 + v2 = а1, (v1 − v2)2 = а1

2 + 4а0, and in this case  
on assumption а0 < 0, а1 < 0, then for unconditional expectation and covariance matrix of 
vector of state variables we shall receive the following expressions 
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Thus, in the steady regime the interest rate r(t) is independent from mathematical de-
rivative r′ (t) (as them covariance are equal to zero) has expectation b/| a0 | and variance         
σ 2/|2a0а1|, while mathematical derivative of the interest rates r′ (t) has zero expectation and 
variance σ 2/|2а1|. 

In terms of formula (29) Eg = b/| a0|, Eh = 0, Σg = σ 2/|2a0а1|, Σh = σ 2/|2а1|, Σgh = 0. If 
the observable market index is only the interest rate r and r′  is not observable then in expres-
sion (29) G = r, H = r′. 

 
7. Equation for the Asset Price when the Short-Term Interest Rate Process is 

Differentiable 
In a case of the differentiable short-term interest rates their behavior over time has no 

Markov properties, therefore it is natural to consider, that the "complete" asset price depends 
not only on the  interest rates, but also from its mathematical derivative, i.e. from all a com-
ponent of a vector R. Formally this vector satisfies the equation (39), which is a special case 
of the equation (1). Therefore equation for definition of the asset price at the interest rate de-
scribed by the equation (1), is valid for the interest rate described by the equation (39) too. 
Only remains to find out, how the features of the equation (39) effect on the form of the asset 
price, if this price can be find as explicit expression.  

Let's address to consideration of the equation (14) for a case, when the process of 
change of the riskfree short-term interest rates is described by the equation (31) and state 
variables are short-term interest rate r(t) and its mathematical derivatives r(k)(t), 1 ≤ k ≤ М −1, 
which compose a vector R. From relations (39) - (41) follows, that in this case q = 1, and М-
vector function of drift µ(R, t) and matrix of volatilities (it degenerates in a М-vector) σ (R, t) 
in the equation (1) will have form 
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Some simplifications of the equation (14) follow from here. They are determined by a spe-
cific form (58) of vectors and matrixes  
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In the right parts of equality (59) all variable and the functions are scalar, including the mar-
ket price of risk λ(R, t). Substituting expressions (59) in the equation (14), we receive it in the 
following form (we shall remind, that according to our designations here r(t) = R1) 
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∂  − R1Р(Т) = 0.                                                             (60) 

 
To consider a problem of the solution of the equation (60) concretely it is necessary that the 
function λ(R, t) was determined in the explicit form. As well as earlier in (15) we shall as-
sume, that it is linear in respect to the vector R, i.e. σ (R, t) λ(R, t) = η + ξ R, ξ = (ξ1 ξ2 ... ξM). 
Thus as in a considered case all assumptions (15) are held, the expression (16) can be consid-
ered as the solution of the equation (60). Then the equations (20) and (21) for the functions 
A(t, Т) and B(t, Т) = (В1 В2... ВМ) take the following form 

 
А′ = (η − b)ВМ  − ½ σ 2 ВМ 

2,                                                                     (61) 
 

В1′ = 1 + (ξ1  − а0)ВМ,                                                                                (62) 
 

Вk′ = (ξ k − аk−1)ВМ  − Вk−1,    2 ≤ k ≤ М.                                                    (63) 
 
Thus the complete function of the price of an active has an affine structure (in respect 

to Rk) and is determined by the formula  
 

Р(R, t, Т) = ехр { } ,                             (64) 
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where variable Rk, 2 ≤ k ≤ М, are not observed. Therefore it remains to compute the expecta-
tion (64) in respect to not observable variables. This results in to final formula of type (30). In 
case considered only first component of state variable vector is observed, the short-term in-
terest rate r(t), and other state variables are its mathematical derivatives.  

Because the coefficients in the equations (61) – (63) are constants the functions A(t, Т) 
and B(t, Т) will depend on single argument, term to maturity T − t = τ, i.e. A(t, Т) = A(τ), and 
B(t, Т) = B(τ). And also ,τddAtA −=∂∂ .τddBtB −=∂∂  Further consider the following 
special case. Assume that market price of risk is a constant and is independent on short-term 
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interest rate r(t) and its mathematical derivatives. Then ξ  = 0 and equations (61) – (63) to-
gether with their initial conditions compose system  

 
B1′  (τ) = а0ВМ (τ) − 1,                B′(0) = 0, 

(65) 
Bk′ (τ) = Bk −1(τ) + аk −1ВМ (τ),    Bk′(0) = 0,   2 ≤ k ≤ М. 
 

The matrix of system (65) is complete coincide with matrix α determined by (41). Therefore 
it turns out that equations (65) and (39) are determined for the same matrix α. Then the fun-
damental matrixes of solutions are based on the same eigenvalues that for case in question are 
assumed different and negative (or have negative real parts for case of complex eigenvalues). 
So the functions Bk (τ) are well determined and have following properties: they are equal to 
zero at τ = 0 and tend to some limit values at τ → ∞. The limit values Bk (∞) are easy found 
from (65) because of Bk′ (∞) = 0. So BM (∞) = 1/a0, Bk (∞) = − ak/a0, 1 ≤ k ≤ М − 1. 

Now will continue analysis of example of previous section, where М = 2. The solu-
tions of system (65) are 
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were v1 and v2 – roots of characteristic polynomial of system (65) that are determined by ex-
pression (51). The function A is computed as integral 
 

∫ +−=
τ

σητ
0

2
2

2
2 )2/1()()[()( BsBbA (s)]ds.                                            (67) 

 
Substitution (66) and (67) in formula (57) with Bg = B1 and Bh = B2 will give the final for-
mula for bond price in this example. 
 

8. Extension of Vasicek Model 
It is interesting to know how strongly the formula for asset price at case considered 

differs from appropriate formula in usual analysis. For it as example will consider the Va-
sicek model of short-term interest rates and its modification for approach considered.  Va-
sicek (1977) supposed that the short-term interest rates follows the process with stochastic 
differential equation 

 
dr = k (θ  − r(t)) dt + σ dW(t),                                                                 (68) 

 
were k > 0, θ  > 0, σ  > 0. This process is observed and the discount bond price at the time t 
with r(t) = r is determined by formula 
 

РV (r, τ) = ехр { })()( ττ VV rBA + ,                                                           (69) 
where  
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V /)1()( −= − ττ

Here λ is constant market price of risks. As it is known process (68) has values of the steady 
expectation E[r(∞)] = θ  and the steady variance Var[r(∞)] = σ  2/ 2k. 

Now we will construct a process (50) that would be equivalent to process (68) in such 
sense that it will have the same steady expectation E[r(∞)] = θ  and the same steady variance 
Var[r(∞)] = σ  2/ 2k. For this it is sufficient that a0 = − k, a1 = − 1, b = kθ. This result in to 
equation 

 
dr′ = [k (θ  − r(t))  − r′ (t)] dt + σ dW(t).                                                   (71) 

 
The equation (71) can be considered as extension of Vasicek model on the differenti-

able processes of short-term interest rates. For process (71) the roots of characteristic poly-
nomial are 

v1 = − ½ (1 + k41 − ),   v2  = − ½ (1 − k41− ), 
 
and functions B1 and B2 are computed by formulae 
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The complete analysis for any values of parameter k is out side of frameworks our analysis 
therefore we will suppose only that this parameter takes rather small values (empirical results 
confirm this, see for example Pearson and Sun (1994)), i.e. we suppose that  k < ¼ . 

To obtain the analytical results for comparison with the Vasicek model we will con-
sider the approximation of functions B1 and B2 that will be based on smallness of parameter k. 
Note that there is approximation k41− = 1 − 2k + O(k2). Therefore 

 
v1 = −1 + k + О(k2),   v2  = − k + О(k2), 

 
Then the functions B1 and B2 will be  
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Comparison of these functions with (70) gives that 
 

В1(τ) = ВV(τ) ( )ττ )1( −− −+ kk eek  + О(k2) = ВV(τ) + ε 1(τ), 
(74) 
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В2(τ) = ВV(τ) ( )ττ )1()31( −− −++ kk eek  + О(k2) = ВV(τ) + ε 2(τ), 
 

where functions ε 1(τ) and ε 2(τ) can be considered as some adjustment functions that show 
difference  functions B1 and B2 from function ВV(τ). These adjustment functions are nonnega-
tive and such that ε 1,2 (0) = ε 1,2 (∞) = 0. They are restricted from above by values 
 

<)(max 1 τε
τ
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τ

 1 + k + О(k2).                            (75) 

 
Thus the bond price in the Vasicek model is determined by expression 
 

РV(r, τ) = ехр{rВV(τ) + ∫
τ

0

[ (λ − kθ)ВV(s) + ½ σ 2ВV(s)2]ds},                    (76) 

where ВV(τ) < 0 is determined in (70) while in modified model considered this price is deter-
mined by formula 
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The last multiplier reflects the effect on bond price of extension of Vasicek model to the 
short-term interest rates processes that are not markovian processes and are differentiable one 
time. It should be waiting that first term in exponent will be not have an essential role and 
main contribution in difference from tradition formula will be give two last terms. Because 
they can have different signs the effect of modification should be careful investigation. 
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