
913 

The Market Price of Risk For Affine Interest Rate 
Term Structures 

Gennady Medvedev’) and Samuel H. Cox” 

Abstract 
This paper examines the market price of risk for discount bond prices under an 
aftine term structure of interest rates. The usual relation plays two roles. First, it 
is the definition of market price of risk and, second, it provides a no arbitrage 
condition for the discount bond market. Here the relation defines the market price 
of risk for more general situations, but includes the processes which give rise to 
markets with no arbitrage. This allows a separate study of the no arbitrage 
condition. We solve for the parameters in the general case of aftine term structure 
with constant parameters. The parameters depend explicitly on the market price of 
risk. Moreover, observations of the yield rate process do not, in general, uniquely 
determine the market price of risk. 

Cet article etudie le prix de march6 du risque pour des prix d’obligations zero- 
coupon, sous une structure par terme affne des taux d’interets. La relation 
habituelle joue un double r6le. Premierement, c ‘est la definition du prix du risque, 
et deuxitmement, elle foumit une condition de non-arbitrage pour le march6 des 
zero-coupons. Ici, la relation dttinit le prix de march6 du risque pour des situations 
plus g&t&ales, mais inclut les processus qui conduisent des marches saris 
opportunitt% d’arbitrage. Ceci permet une etude s15par& de la condition de non- 
arbitrage. Nous determinons les paramttres dans le cas d ‘une structure par terme 
affine des taux d ‘int&&s parametres constants. Les paramttres dependent de facon 
Claire du prix de march6 du risque. De plus, 1 ‘observation du processus du taux de 
rendement ne determine en gCnCral pas uniquement le prix de march6 du risque. 
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1 Introduction 

Consider a market based on a short mte process r(t) that follows the 
stochastic differential equation 

h-(t) = p(kr)dt + o(t,r)dW(t) (1) 

where W(t) is a standard Wiener process and the functions p(t,r) 
and a(t,r) are the instantaneous drift and variance of the process, 
respectively. The underlying short rate r(t) determines the stochastic 
properties of the bond price P(t) and the yield to maturity R(t). Let S 
denote the maturity date and let T = S-t denote the number of years 
to the maturity date. If the bond price P(t, T; S) can be represented 
in the form 

P(t,r; S) = exp{A(t, S) - rB(t, S)} (2) 
and 

P(S, r; S) = 1 

then one says that the model admits an afEne term structure 161. A 
sufficient condition for an affme term structure is that the coefficients 
in the equation 1 have the following forms: 

IL(k T) = ace + P(t) (3) 

a(t,r)2 = y(t)r +6(t) 

By the It.6 formula the bond price process P(t,r(t);S) follows the 
stochastic differential equation 

dP = Pf(t, r; S)dt + Pg(t, r; S)dW(t) (4) 

where W(t) is the same Wiener process as in equation 1 and the coef- 
ficients f and g have the form: 

f(t,r;S) = A&S) 

- rBt(t, S) - p(t, r)B(t, S) + 0.5a2(t,r)B2(t, S)(5) 

g(h r; s) = 46 r)B(t, s) (6) 
If the quantity 

q(t r.s) = f(CvS) - 7. 1 9 
S@, r; S) 

is independent of the maturity date S one says that the (local) no 
arbitrage condition is fulfilled and q(t, r; S) is called the market price 
of risk. 

The yield to maturity R(t,T) is the internal rate of return at time 
t on a bond with maturity date S = t + T, 

R(t,T) = -$logP(t,r;t +T) for T z 0 (8) 
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The yield to maturity is also a stochastic process. It satisfies the 
stochastic differential equation 

dR = u(t, R; T)dt + v(t, R; T)dW(t) (9) 

where W(t) is again the same Wiener process as in the equation 1 and 
the coefficients u and 2) are determined by Ito’s formula. 

2 Market Price of Risk 

The quantity q(t, r; S) in 7 carries a double burden. On the one hand 
the relation 7 defines the market price of risk. On the other hand, one 
refers to the relation 

for all Si and Ss as the no arbitrage condition. It seems reasonable to 
partition these burdens. 

Moreover, there is a question as to why the market price of risk is 
defined only for the no arbitrage case. In other words, why not let the 
market price of risk depend on the maturity date S. It is natural to 
allow for this and, thus, to broaden the concept of arbitrage processes 
as well. Then the market price of risk will be defined by q(t,r;S) in 
7 without the restriction that it be independent of S. Keep in mind 
that the no arbitrage condition is fulfilled when the q(t, r; S) in 7 does 
not depend on the maturity date S. 

Note that the sign of coefficient o in the equation 1 does not affect 
the properties of the short rate process r(t). This is because V = 
-W is also a standard Weiner process. Replacing W by -V gives an 
equivalent formulation: 

dr(t) = p(t, T)dt - u(t, r)dV(t) 

but the sign of the volatility term changed. In the same way, the bond 
price dynamics can be equivalently formulated as 

dP = Pf(t,r; S)dt - Pg(t,r; S)dV(t) 

with the sign of the volatility term changed. In the original formulation 
“the” market price of risk is *, but in the second it is k. They are 
not equal. However, one is in B ependent of S if and only i 7 the other is 
also. The ambiguity should be eliminated from the definition. 

The basic equation for pricing of the bonds in an efficient (no ar- 
bitrage) market has the following form: 

pt + [p&r) + q(t,r)o(t,r)]P, + ;02(t,T)PTr -7-P = 0 (10) 
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Here and elsewhere, the subscripts denote partial derivatives. In order 
maintain an affine term structure framework, one should add to 3 the 
relation: 

q(t, T)dh T) = a+ + v(t) (11) 
It follows the affine term the structure of the market price of risk has 
the following functional form: 

(12) 

Note that when E(t) = 0, -y(t) = 0 and the quantity 

does not depend on r. The market price of risk is a constant as in the 
Vasicek (81 model; when n(t) = 0, 6(t) = 0, and the quantity 

is a constant q the market price of risk is 

q(t, r) = 4 

as in the Cox-Ingersoll-Ross model [4]. 
Substituting 2, 3, and 11 in the equation 10 gives the equations for 

the functions A(t, S) and B(t, 5’) in the following forms: 

At(t, S) = {P(t) + v(t)) B(t, S) - 0.56(t)B(t,S)2 (13) 

subject to A(S, S) = 0 and 

B&, S) + [a(t) + t(t)]B(t, S) - 0.5y(t)B(t,S)’ + 1 = 0 (14) 

subject to B(S, S) = 0. The explicit form of the functions A(t, S) and 
B(t, S) can be found by the following steps: 

Solve 14. 
Substitute the solution of 14 into 13. 
Integrate 13. 

Using 3, 13, and 14 in 5 and 6 gives the explicit form of the coefficients 
of equation 4 that, by the formula 7, determine q(t,r). 

f(t, T; s) = T + [EW + v(t)lB(t, s) 
= r + q(t,r)v(t,r)B(t, S) (15) 

g(t) r; s) = u(t, T)B(t, s) (1’3) 
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Substituting 15 and 16 in the formula 7 to determine the market price 
of risk gives the identity. Find the explicit solution form for the equa- 
tions 13 and 14 in the case when the functions ~1, S, y, 6, <, and n in 
equalities 3 and 12 are the constants. The solution of the equation 14 
has the following form: 

qt, S) = 
2 (exp{s(S - t)} - 1) 

s+o+{+(s-o-<)exp{s(S-t)} (17) 

where c = ~//(a + <)s + 2y Using this representation in 14 we obtain 

(S-t)-$(t,S)-slog l-;B(t,S) 

(18) 
where for compactness of notation we use 

X = 6(cu + 0 - $0 + n), and B = E - (cy + 0. (1% 

Note that formulas 17 and 18 are of independent interest because they 
give the general solution of the problem for an affine term structure 
with constant parameters. When 6 = 0, 1) = 0 the expressions 17 and 
18 give the corresponding functions for the Cox-Ingersoll-Ross model 
(the function B(t,S) has the same form). When y = 0, < = 0, the 
expressions 17 and 18 give the corresponding functions of the Vssicek 
model (in order to obtain the explicit form of the function A(t, S), it 
is necessary to first decompose the function B(t, S) in a series in y up 
to second order terms). 

For the determination of the market price of risk, Vssicek [8, 1977, 
page 1841 suggests using the following formula: 

lim RT = i [p(t,r) + q(t,r)U(t,r)] 
T-O+ 

Using the relations 2, 3, 8 and 12, the equality 20 may be rewritten in 
the following form: 

lim A@, t + T) - TAs(t, t + T) + rTBs(t, t + T) - B(t, t + T) = 
l--.0+ T2 TZ 

f ([a(t) + E(t)1 r + o(t) + v(t)) 

where the subscript S denotes the partial derivative with respect to 
the second argument of the functions A(t, S) and B(t, S). However, 
equation 21 does not allow us to determine the market price of risk (at 
least for the general affine term structure with constant parameters). 
Indeed, expand the functions A(t, S) and B(t, S) for the general affine 
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term structure with the constant parameters as in equations 17 and 18 
its power series in T = S - t: 

B(T) = T + 0.5(cu + <)P + O(P) (22) 
A(T) = -0.5(@ + TJ)T’ + o(T2) 

Because As(t, t + T) = A,(T) and Bs(t, t + T) = E&(T), the equality 
21 takes the form 

lim (0.5(p + 7) + 0.5r(cu + <) + o(T)) = 0.5[((~ + [)r + p + ~1 
T-O+ 

(23) 

Thus we obtain again an identity that does not specify the market price 
of risk. Thus we see that an explicit form of the market price of risk 
is not provided by an affine term structure framework. Some authors 
(Duffie [6], Hull [3], BjGrk [l]) specify no arbitrage processes in the 
affine term structure framework by writing q(t, T) = 0. Regardless of 
whether or not there is an affine term structure, if there is no arbitrage, 
q(t, T; S) is independent of S. Then the change of measure obtained by 
setting dV = dW + q(t,r)dt, and replacing dW by dV - q(t, T)dt gives 
a reformultion in which 

dP = rPdt + gPdV. 

In the new formulation, the market price of risk is zero. 
Finally, the market price of risk is defined by expression 7 only for 

bond prices that follow the stochastic differential equation 4. At the 
same time, bond price changes can be described by other stochastic 
mathematical models (for example by Markov chains or autoregress- 
sion processes). The definition of the market price of risk should be 
independent of the way of bond price changes are described mathe- 
matically. In this sense, the definition of market price of risk needs to 
be revised. 

3 The No Arbitrage Condition 

This condition is fulfilled when the quantity 7 does not depend on the 
maturity date S. From the mathematical point of view this means that 
the derivative of q(t, T; S) with respect to S is equal to zero. Substitute 
in 7 the explicit form of coefficients f and g from 5 and 6, compute this 
derivative and set it equal to zero. After some algebraic transformation, 
we obtain the no arbitrage condition (NAC) in the following form: 

;O(t,+B(t, S)*Bs(t, S) = 

At@, S)Bs(t, s) - At.&, S)B(t, s) + (24) 

T [B,s(t, S)B(t, S) - &(t, S)Bs(t, S) - Bs(t, S)] for t I S 
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Expression 24 provides some interesting conclusions: 

1. The NAC is not linked explicitly with the instantaneous drift 
~(t, r) (the terms that contain the drift cancel). The dependence 
of the NAC on the properties of the instantaneous drift comes 
through the functions A(t, S) and B(t, S) (see equations 13 and 
14). 

2. The NAC is linked explicitly to the properties of the instanta- 
neous variance a(t,r)s. In order for the NAC to hold, the in- 
stantaneous variance must be linear function of the short rate r. 
Note that this property is consistent with the variance form in 3 

3. Because Bs(t,S) > 0 (when the maturity date increases, the 
bond price has to decrease for any fixed short rate), the left side 
of 24 is positive. This means that the NAC must satisfy the 
inequality: 

At(t, S)&(t, s) - Ats(t, S)B(t, s) > 

T ([&(h S) + 11 Bs(h S) - wt, wdt, 4) (25) 

4. If the instantaneous variance u(t,r) is independent of the short 
rate r (the coefficient y(t) in 3 is equal to zero), then the NAC 
holds for an affine term structure where the function B(t, S) sat- 
isfies the additional equation: 

B(t, S)&s(t, S) - Bt(T S)Bs(t, S) - Bs(t, s) = 0 (26) 

Moreover, from 2 the function B(t, S) must have the properties 
B(S, S) = 0, Bt(t, S) i 0, and Bs(t, S) > 0 

5. If the instantaneous variance o(t, r)* is proportional to the short 
rate T (the coefficient 6(t) in 3 is equal to zero), the NAC holds 
for an affine term structure for which the functions A(t, S) and 
B(t, S) satisfy the equation: 

At(t, S)Bs(t, s) - Ats(t> S)B(t, s) = 0 (27) 

subject to A(S, S) = 0. 

It is easy to check the models: Vasicek 181, Cox-Ingersoll-Ross [4], 
Ho-Lee (in the description of Hull [3]), Hull-White [7, 19931 (extended 
Vssicek and extended CIR) satisfy the NAC. The models of Dothan [5] 
and Black-Derman-Toy [2] do not satisfy the NAC, but they are not 
affine term structures either (D&e 161). 

The NAC 24 is interesting because it is written only in terms of the 
functions A(t, S) and B(t, S) and can be used to check the NAC when 
the bond price is given in the form 2 but equation 4 is not given. At the 
same time, the equality 24 required in order to fulfill the NAC. This 
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appears to take into account equations 13 and 14 for the functions 
A(t,S) and B(t,S) in equality 24. The equality is transformed in 
equality 3 for o(t, T)~. Thus the expressions 3 are sufficient conditions 
in order for the bond price to have the form 2, and the second equality 
3 is a necessary and sufficient condition that the bond price process 4 
is a no arbitrage process. 

4 Estimation of the Market Price of Risk 

Although the market price of risk is not determined explicitly in the 
affine term structure framework (see above), one hope to estimate it 
from observed data. The market price of risk is a function of the unob- 
served short rate r(t). The financial press quotes only the asset price 
or the yield rate. Consider the opportunity to estimate the market 
price of risk by the observating yield rates. From the equalities 2 and 
8 we get the following dependence between the yield rate R(t, 7’) and 
the short rate r(t) 

This dependence allows construction of the stochastic differential equa- 
tion for the yield rate in 9. The coefficients of this equation are deter- 
mined by the It6 formula applied to the function h(t, r) in 28: 

11 = ht + pL(t,+, + 0.5c7(t,r)2h,, 

and u = o(t, r)h,. Using the explicit form of the function h(t, T) from 
28 gives 

u(t,R;T) = ${[B,(t,t+T)+Bs(t,t+T)]r(R)- 

At(t,t + 2’) - As(t, t + T) + p(t,r(R))B(t, t + T)} 
and 

v(t,R;T) = $o(t,r(R))B(t, t + T) 

Here, as before, the subscript t denotes the partial derivative with 
respect to the first variable and the subscript S denotes the partial 
derivative with respect to the second variable; r(R) denotes the inverse 
of the function 28, i.e.: 

r(R) = 
TR+A(t,t+T) 

B(t, t + T) (2% 

For models with constant parameters (z.e.:the functions LY, 4, y, 6, 5, 
and n in 3 and 11 are constant), the following properties hold: A(t, S) = 
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A(S - t) and B(t, S) = B(S - t). Therefore, At = -As, Bt = -Bs, 
and the expressions for u(t, R; 5’) and v(t, R; S) depend only on R and 
the difference S - t = T. They are reduced to the following form: 

u(R,T) = aR+a 

(30) 

u(R,T) = y y 
d 

TR+A(T) +6 

B(T) 

Take the simplifying assumption y = 0, and introduce the simplifying 
notation: 

0=V% 

(31) 
F _ A(T) I P B(f) 

t a T 

Then the stochastic differential equation 9 for the yield rate R(t,T) 
can be rewritten in this form: 

dR = aRdt + aFdt + crFdW(t) (32) 

For the existence of a stationary solution, take (Y < 0. This equation 
allows an analytical solution in the following form: 

R(s) = R(t)exp{a(s - t)} - F (1 - exp{cY(s - t)}) + C(t, s) (33) 

where [(t, s) is a normal random variable with zero expectation and 
covariance of the form: 

Cov(C(t, Sl), 4% 4) = 

* (exp{olsi - ssl} - exp{a(si + ss - 2t))) (34) 

The random variables ((tl, tz) and C(t3, t4) are mutually independent 
for any tl < tz I t3 < tq. These properties of the solution 33 allow 
for estimation of the unknown parameters of equation 32 by maximum 
likelihood methods. Introduce the simplifying notation 

(35) 

Consider a sample set of the observations of the yield rate values: 

{R, = R(t,,T) : 15 i < N} 
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These sample values are functions of the unknown parameters of the 
yield rate process 32. These parameters are o, 4, cr, {, and 7. Two 
of these (5 and n) determine the market price of risk by formula 12. 
These parameters determine the functions A and B by equations 13 
and 14 and the auxiliary values F and G by formulas 31 and 35. Using 
the normality and the mutual independence of the random variables 
C(ti, t”+i) allows us to write the logarithm of the likelihood function in 
the form: 

(36) 

In this expression the known values are {R,} and {r, = t,+i - t%}. 
The unknown values are o, F, and G. Maximizing the function 36 
with respect to the variables u, F, and G, we find their most likely 
values c?, Fe, and Ge. Thus, the estimate oe provides one of the five 
unknown parameters. 

Solving equations 13 and 14, we obtain 

> 
[T - B(T)] + s (37) 

B(T) = 
exp{(a + WI - 1 

(a+E 

Thus for the determination of the four remaining parameters 0, o, <, 
and 9, we have only two equations: 

P+V -&)(I-y)+a+$F=F’ 
(39) 

and 
~‘B(V2 _ Ge 
21aelT2 

(40) 

solving equation (40) for B(T) and substituting in the equation (39), 
we obtain the equality that links the four unknown parameters: 

This means that the four parameters p, 6, <, and n cannot be estimated 
uniquely solely by the maximum likehhood method. For their unique 
estimation, it is necessary to have additional information. We have a 
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more simple case if the parameter { is equal to zero (Vasicek model). 
In this case, the market price of risk is a constant 

Then the value B(T) is determined uniquely by formula 38, B(T) = 
Be, and the parameter e can be determined uniquely by formula 40 
also: o = be. However, the two parameters p and n cannot be deter- 
mined uniquely. They define a two-dimensional surface that is given 
by the following relation: 

= &Fe + os((re)s (&(1-g)+%) (42) 

Thus the market price of risk cannot be found by the observing 
the yield rate process. Note that the parameter fl that determines the 
expectation of the yield rate process in the stationary case cannot be 
found uniquely either. There is no problem for unique estimation of 
this parameter when the market price of risk is equal to zero (< = 0, 
‘I = 0). 

5 Conclusions 

The market price of risk q(t, r-; S) should be redefined so that it applies 
not only in the case of no arbitrage, but also markets that admit ar- 
bitrage. The definition of the market price of risk has to be given in a 
form that is independent of the mathematical description of the bond 
price process. 

The equalities 17 and 19 give the solution to the general problem 
of affine term structure with the constant parameters. They show that 
the market price of risk cannot be found in the way Vasicek [8] suggests. 

The no arbitrage condition (NAC) is defined by the equality 24. 
It can be used to check the NAC when the bond price is given in an 
affine term structure, but not in the form of a stochastic differential 
equation. 

The NAC 24 coincides with the second equality 3. This means that 
the equalities 3 are sufficient for an affine term structure of bond prices 
and the second equality 3 is necessary and sufficient that this structure 
admit the NAC. 

Affine term structure and the bond price process do not determine 
the value of the market price of risk. 

Observations of the yield rate process alone are not sufficient to 
uniquely estimate the market price of risk. 
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