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Abstract

A theoretical analysis of emission line broadening due to Coulomb interaction of carriers is performed. An analytical

approximation for the spectral line shape function with exponential decays is derived by using the perturbation theory

for many-body electron–hole systems for both non-degenerate and degenerate conditions. An explanation of the

experimentally observed spectral line asymmetry and the linewidth change as a function of the temperature and the

excitation level is given.
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1. Introduction

An adequate theoretical description of the
spectral characteristics of semiconductor struc-
tures requires the contribution of emission line
broadening effects to be considered. The analysis
of emission processes within the framework of the
density matrix formalism with the empirical
interband polarization decay time as well as the
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description of many-body processes by the first-
order perturbation theory with the energy-inde-
pendent carrier relaxation time result in the
Lorentzian shape of the homogeneously broa-
dened emission line [1]. The examination of laser
structures being perfect in the crystallographic
respect, in which the effect of spatial inhomogene-
ity on the spectral broadening has been reduced to
a negligible level, has revealed that the line of the
homogeneous broadening has exponential tails
[2,3]. It was found that the logarithmic decrement
of decay and the linewidth increase with the
temperature and injection current growth. The
d.
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evident asymmetry of the emission line profile was
observed at 4.2K.
Theoretical substantiations of the non-Lorent-

zian shape of the emission line are obtained by
taking into account the non-Markovian processes
[4–7]. The emission processes kinetics is described
by the density-matrix formalism. Non-Markovian
relaxation behavior was ensured by the autocorre-
lation function of the interaction Hamiltonian in
the equation for the off-diagonal element of the
density matrix. The time-dependent damping
factors of the dipole momentum of electron–hole
pairs due to carrier–carrier and carrier–LO pho-
non scatterings were derived in [4,5].
A comprehensive quantum-mechanical descrip-

tion of spontaneous emission, based on coupled
semiconductor luminescence and Bloch equations,
is presented in [8–10]. The solution of the resulting
eigenvalue/eigenvectors problem allowed to take
into account the coupling of the polarization
for various k-states and to describe excitonic
emission properties of quantum-well (QW) hetero-
structures. The dephasing of photon-assisted
polarization due to Coulomb interaction of
carriers was treated within the Markov approx-
imation.
A rigorous formulation for the luminescence

signal in terms of current–density fluctuations was
developed in [11–13]. A spontaneous emission was
derived by explicitly solving the Bethe–Salpeter
equation. Coulomb interaction of carriers was
considered in the Hartree–Fock approximation.
Treating the Coulomb interaction within the

Markov limit allows to carry out the correct
calculation of the shape and the spectrum max-
imum position. However, to be able to simulate
the spectral tails correctly, the non-Markovian
relaxation behavior has to be taken into account.
The study of emission processes in the suggested
models can be performed only numerically. It
makes it difficult, therefore, to analyze the
influence of excitation conditions and parameters
of semiconductor materials on the spectrum
profile.
In the present paper, the influence of Coulomb

interaction of carriers on the emission line shape in
QWs is studied. Similar to the analysis [4,5,8], the
dephasing processes are taken into account in
quadratic order in the Coulomb interaction, but
additional terms are considered that result in
the coupling of the radiative transition with
various k-states. The basic idea of the method
consists in the determination of the functional
dependence of tails of the emission line function by
means of the perturbation theory [14]. Then the
spectral line function is extrapolated into its
central part by using the normalization require-
ment. Here the degeneracy in the statistical
distribution and spin of particles are taken into
consideration. An analytical shape function for the
homogeneously broadened spectral line is ob-
tained in the parabolic band approximation. The
asymmetry of the spectral line and the linewidth
dependence on the temperature and the excitation
level are analyzed.
2. Probability of optical transitions in view of

carriers Coulomb interaction

Let us consider spontaneous optical transitions,
where a state with n-electron–hole pairs changes
to a state with ðn � 1Þ-electron–hole pairs. We
have chosen single-particle wave functions in
the form of Bloch functions with various wave
vectors. Different second-quantization operators
are used for the states in the conduction and
valence bands. The electromagnetic-interaction
operator, which describes radiative transitions
with conservation of the wave vector, can be
written in the form

V̂ph�
X
r;r0

Rr0rb̂r0 âr, (1)

where âr and b̂r are the annihilation operators for a
conduction electron in an r-state, which are
characterized by the wave vector kr and spin sr.

Rr0r ¼ d�kr0 ;kr
d�sr0 ;sr

(2)

represents the wave vector and the spin conserva-
tion at the optical transitions. In expression (1) the
creation operators for photons ĉyr are omitted,
because in further analysis only the transitions
are considered, when there are no photons in
the initial state and one photon is created
after recombination of the electron and the hole,
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i.e. non-zero matrix elements are h1jĉyr j0i ¼ 1.
The momentum matrix elements are supposed to
be independent from the wave vectors of the
electron states and photons, involved in the
transition. The polarization characteristics are
not considered.
We introduce the interaction between conduc-

tion electrons, between holes, and between elec-
trons and holes into the Coulomb interaction
operator, disregarding exchange interaction be-
tween electrons and holes and interaction resulting
in processes of interband transfer, i.e.,

V̂ ¼
X
i;j;i0;j0

Qi0j0jiVki�ki0

1

2
â
y

i0
â
y

j0
âj âi

�

þ
1

2
b̂
y

i0 b̂
y

j0 b̂jbi � â
y

i0
b̂
y

j0 b̂j âi

�
. ð3Þ

Here, ây and b̂
y
are the creation operators for a

conduction band electron and a hole, respectively,
with a certain wave vector

Qi0j0ji ¼ dki0 þkj0 ;kjþki
dsi0 ;si

dsj0 ;sj
(4)

represents the momentum and the spin conserva-
tion, Vki�ki0

is the matrix element of the Coulomb
interaction.
The operator that introduces the first-order

perturbation-theory corrections into the initial
many-body state can be written formally as

Ĉcv ¼ 1þ
X
i;j;i0 ;j0

Qi0j0ji

â
y

i0
â
y

j0
âj âi

2ðEci þ Ecj � Ecj0 � Eci0 Þ

2
4

þ
b̂
y

i0 b̂
y

j0 b̂j b̂i

2ðEvi þ Evj � Evj0 � Evi0 Þ

�
â
y

i0
b̂
y

j0 b̂j âi

Eci þ Evj � Evj0 � Eci0

3
5, ð5Þ

where Ec and Ev are the energies of one-body
states of the conduction and valence bands
counted from the energies of the ground one-body
states with k ¼ 0. An ambiguity of the expansion
coefficients of terms with similar energies of initial
and mixed states will be considered separately in
further analysis.
Expression (5) is used to find the first-order
Coulomb corrections to the radiative transitions.
For the conduction band, we can write

M̂cc ¼
X
r;r0

X
i;j;j0

Rr0rQrj0jiVki�kr

�
b̂r0 â

y

j0
âj âi

Eci þ Ecj � Ecj0 � Ecr

. ð6Þ

A similar expression is valid for the valence band.
The operator of the first-order corrections for
Coulomb interaction between carriers in different
bands to the radiative transitions has the form

M̂cv ¼ �
X
r;r0

X
i;j;i0ar

Rr0rQi0rjiVki�ki0

�
ârâ

y

i0
b̂j âi

Eci þ Evj � Evr0 � Eci0

�
X
r;r0

X
i;j;j0ar0

Rr0rQrj0jiVki�kr

�
b̂r0 b̂

y

j0 b̂j âi

Eci þ Evj � Evj0 � Ecr

�
X
r;r0

X
i;j

Rr0rQrr0jiVki�kr

�
b̂j âið1� ncr � nvr0 Þ

Eci þ Evj � Evr0 � Ecr

. ð7Þ

Operator (6) and the first term in (7) describe the
recombination of an electron and a hole with
transfer of excess momentum to another electron.
The third term in (7) describes the variation in the
recombination probability for an electron–hole
pair with a zero quasi-momentum.
With regard to operators (6) and (7), the

normalized probability of a radiative transition
with energy _o, which describes spontaneous
transitions from the n-electron state (this state,
among others, includes the one-particle states of
the conduction band with the wave vectors k1, k2
and the one-particle state of the valence band with
the wave vector k3) to the ðn � 1Þ-electron state
(which, instead of the aforementioned set of one-
particle states, includes only the one-electron state
of the conduction band with the wave vector k4)
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has the form

W c ¼
Vk1þk3 � Vk2þk3

Eck1 þ Eck2 � Eck4 � Ec�k3

�

�
Vk1þk3

Eck2 þ Evk3 � Ev�k1 � Eck4

þ
Vk2þk3

Eck1 þ Evk3 � Ev�k2 � Eck4

�2
�dðEck1 þ Eck2 þ Evk3 � Eck4 � D_oÞ, ð8Þ

where D_o ¼ _o� Eg, Eg is the effective band gap
in the QW.
If the states in the conduction band with wave

vectors k1, k2 have different spins, then the
corresponding transition probability can be ob-
tained from expression (8), where matrix element
Vk2þk3 or Vk1þk3 equals zero. For direct transitions
with k, the normalized probability is just

W d ¼ dðEck þ Ev�k � D_oÞ. (9)

The probability of radiative transition (8) is an
analogue of the Fourier transform of the damping
factor [4,5]. The products of the terms with
different poles describe the coupling of the
radiative transition with various k-states due to
the Coulomb interaction of carriers, and they are
not presented in analysis [4,5]. Such terms would
appear in model [8], if the full equation of motion
is analyzed for expectation values of four carriers
and one-photon operators instead of treating only
the Coulomb part of the Hamiltonian. The
coupling terms can play an important role. For
example, instead of interband radiative transitions
if we consider the intersubband radiative transi-
tions between the subbands with the equal
curvature (that can be taken into account in (8)
by the replacement Evk ! �Ec�k), then the
probability W c becomes zero. Therefore the line
width at intersubband transitions becomes
strongly dependent on both the subbands mass-
dispersion and QW width [15].
In expression (8) we used the energies of the

initial and final many-electron states, with
the Coulomb interaction being disregarded. If the
Coulomb interaction even in the first-order per-
turbation theory is included in the analysis, W c
becomes a function of all the one-electron
components of the many-particle state, which
significantly complicates further analysis. We can
conclude qualitatively that the change in the
energy of an ensemble of particles due to their
interaction should shift the argument of the delta
function to lower energies (the effect of band gap
shrinkage) and broaden the delta function itself
upon averaging over the set of many-electron
states. The latter circumstance also leads to the
broadening of emission lines. The effect of this
mechanism requires separate investigation and is
beyond the scope of this study.
When the argument of the delta function is

taken into account, one can see that, for specified
different values of k1, k2, k3 the value of W c,
depending on the energy of emitted photons, has
three resonance peaks near the energies of the
direct transitions with the corresponding wave
vectors. This phenomenon is due to the fact that
the perturbation theory approach was used; it
would be absent if an exact basis expansion of
many-electron states had been used instead of
approximate expression (5). Far from the reso-
nances, only the basis components of expansion
(5) with small coefficients are presented in transi-
tion probability (8), which justifies the application
of the perturbation theory in these spectral
regions.
To derive the line shape function it is necessary

to separate in expression (8) the terms with the
poles corresponding to different wave vectors k1,
k2, k3, i.e.,

W c ¼ W c1ðD_o� Erk1Þ þ W c2ðD_o� Erk2 Þ

þ W c3ðD_o� Er�k3Þ, ð10Þ

where

W c3ðD_o� Er�k3 Þ

¼
Vk1þk3 ðVk1þk3 � Vk2þk3 ÞðEr�k3 � Erk1 Þ

2

ðD_o� Er�k3Þ
2
þ ðD_o� Erk1 Þ

2

"

þ
Vk2þk3 ðVk2þk3 � Vk1þk3 ÞðEr�k3 � Erk2 Þ

2

ðD_o� Er�k3 Þ
2
þ ðD_o� Erk2 Þ

2

#

�
dðEck1 þ Eck2 þ Evk3 � Eck4 � D_oÞ

ðD_o� Er�k3 Þ
2

, ð11Þ
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W c1ðD_o� Er�k1Þ

¼
Vk1þk3ðVk1þk3 � Vk2þk3ÞðEr�k3 � Erk1Þ

2

ðD_o� Er�k3 Þ
2
þ ðD_o� Erk1Þ

2

"

þ
Vk1þk3Vk2þk3 ðErk1 � Erk2 Þ

2

ðD_o� Erk1 Þ
2
þ ðD_o� Erk2Þ

2

#

�
dðEck1 þ Eck2 þ Evk3 � Eck4 � D_oÞ

ðD_o� Erk1Þ
2

. ð12Þ

The probability W c2ðD_o� Erk2 Þ is obtained from
expression (12) for W c1ðD_o� Erk1 Þ by the inter-
change k12k2.
3. Statistical averaging of the optical transitions

probability

Quantum-mechanical probability (8) with the
specified values of k1, k2, k3, and k4 can be applied
to the entire ensemble of many-particle states. In
order to calculate the resulting contribution to the
rate of spontaneous transitions, it is necessary to
sum expression (8) over all the initial many-
particle states containing the noted one-particle
state, with regard to their occupation numbers.
Summation over the final states is left out in
accordance with the quasi-momentum conserva-
tion law and the existence of only one final state
with k4 ¼ k1 þ k2 þ k3. The calculation is per-
formed by disregarding the Coulomb interaction,
as for the delta function in expression (8).
Using thermodynamic filling factors

f cðEckÞ ¼ ð1þ exp½ðEg þ Eck � F eÞ=kT �Þ
�1,

f vðEvkÞ ¼ ð1þ exp½ðFh þ EvkÞ=kT �Þ
�1, ð13Þ

we found the four-state statistical factor, i.e.,

pk1;k2;k3 ¼ f c1f c2f v3ð1� f c4Þ. (14)

Assuming electroneutrality of the QW layer in the
approximation of nondegenerate electron gas we
obtained

pk1;k2;k3 ¼

ffiffiffiffiffiffi
Nv

Nc

r
exp

3ðDF � EgÞ

2kT

�

�
Eck1 þ Eck2 þ Evk3

kT

�
, ð15Þ

where Nc and Nv are the effective states density
for electrons and holes, DF ¼ F e � Fh is the
difference of the quasi-Fermi levels for electrons
F e and holes Fh.
In order to obtain contributions to the spectral

broadening of individual components of the
optical transitions probability, one has to fix the
wave vector responsible for a pole and integrate
(with regard to the statistical factor) W ci over the
phase space of the remaining wave vectors.
Finally, denoting the argument of the obtained
functions by the same variable k and summing
these functions, we found the line shape for the
direct transitions with the indicated wave vector.
The result is valid for the entire spectral range
(except for the region D_o� Erk � 0). The values
of the broadening function in this region can be
estimated by way of its restriction and normal-
ization to the non-perturbed probability of direct
optical transitions (with the Coulomb interaction
not taken into account).
4. Calculation of the emission spectral line

In order to calculate the line shape function, it is
necessary to specify the dependence of the energies
of one-electron states on the wave vector. In the
parabolic band approximation, for electron and
hole energies we have

Eck ¼
_2k2

2mc

; Evk ¼
_2k2

2mv

, (16)

where mc and mv are the electron and hole effective
masses, respectively. We mention here that in the
paper we use positive energies Eck and Evk. The
band gap energy Eg and signs of one-particle
energies are explicitly treated in expressions (13)
and (15). This make it possible to obtain the result
for the process of photon emission with participa-
tion of two holes and one electron by a simple
replacement of indices: c2v.
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We use the matrix element of the Coulomb
interaction in a two-dimensional system in the
simplest form

VDk ¼
e2

2��0jDkjS
, (17)

where � is the dielectric constant of the semicon-
ductor material, and S is the area of the QW layer.
The screening effects are not important here
because at k ¼ 0 probabilities (12) and (11) also
have poles and the resulting singularities are
eliminated in a semi-empirical manner.
Let us consider a component of the probability of

optical transitions (11) that has a pole when the
energy of light photons equals the energy of direct
transitions involving the states of the valence band
with wave vector k3: D_o ¼ Er�k3 . To obtain the line
shape function, we integrate the product of (11) and
(15) over the phase space of wave vectors k1 and k2,

Lc3ðD_oÞ

¼

1

2

1

Z Z
pk1;k2;k3 :W c3ðD_o� Er�k3Þ

Sdk1

ð2pÞ2
Sdk2

ð2pÞ2
:

8<
:

ð18Þ

Here, the upper multiplier within the curly bracket
corresponds to interband transitions, involving the
electrons with the same spins, and the lower—with
different ones. The factor 1

2
takes into account the

indistinguishability of many-body states at permu-
tations of k1 and k2.
Integral (18) cannot be found analytically, but it

can be estimated for limiting cases jD_o0jbkT and
jD_o0jbEr�k3 , where D_o0 ¼ D_o� Er. Upon
integration, it is convenient to perform a linear
transformation of integration variables that re-
duces a quadratic form of projections of wave
vectors in the delta function to a diagonal
representation. For the long-wavelength tail of
the spectral line (D_o0o0), we obtain

L�
c3ðD_o

0Þ

¼ A

m2
cðm

2
c � 4mcmr � 24m2

r Þ

2ðm2
c þ 4mcmr þ 8m2

r Þ
2

ðkTÞ
2

ðD_o0Þ
4

m2
c

ðm2
c þ 4mcmr þ 8m2

r Þ

kT

jD_o0j3

8>>>><
>>>>:
�

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

mr

mc

jD_o0jEr

ðkTÞ
2

s !
exp

3ðDF � EgÞ

2kT

�

�
Er

kT
1þ

mr

mc

� �
þ

D_o0

kT

�
;

ffiffiffiffiffiffi
mc

mv

r
f 2c �

D_o0

2kT

� �
f vð0Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ

Here, the terms in the first curly bracket corre-
spond to the different spin combinations of
interacting particles (with identical or non-identi-
cal spins); in the second curly brackets the upper
and lower factors correspond to the nondegener-
ated and degenerated (at Er ¼ 0) cases, and I0 is
the modified Bessel function of the first kind,
m�1

r ¼ m�1
c þ m�1

v :

A ¼
e2

2��0

� �2 ffiffiffiffiffiffiffiffiffiffiffi
mcmv

p

8p2_2
¼ Ry

ffiffiffiffiffiffiffiffiffiffiffi
mcmv

p

me�2
,

Ry � 13:6 eV. For the short-wavelength tail of the
spectral line (D_o040) we have

Lþ
c3ðD_o

0Þ

¼ A

m2
cðm

2
c þ 4mcmr � 24m2

r Þ

2ðm2
c � 4mcmr þ 8m2

r Þ
2

ðkTÞ
2

ðD_o0Þ
4

m2
c

ðm2
c � 4mcmr þ 8m2

r Þ

kT

ðD_o0Þ
3

8>>>><
>>>>:

�

exp
3ðDF � EgÞ

2kT
�

Er

kT
�

D_o0

kT

� �
;

ffiffiffiffiffiffi
mc

mv

r
f 2c

D_o0

2kT

� �
f vð0Þ:

8>>>><
>>>>:

ð20Þ

Terms of expressions (19) and (20) for transitions
with participation of electrons with identical spins
are not positive at definite ratios of the effective
masses. This is because (11) includes the contribu-
tion related to coupling of the radiative transition
with various k-states. Since the probability of
spontaneous transitions (8) cannot be negative, in
the resulting rate of spontaneous transitions at an
arbitrary frequency, the negative contribution of
expressions (19) and (20) obtained for small values
of Er�k3 should be compensated by the contribu-
tion at large values or the remaining transition
probability components (12).
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By analogy to the previous case for the
component of the spectral-line profile correspond-
ing to the probability of optical transitions (12), we
have the following expressions for the long-
wavelength tail of the spectral line (D_o0o0):

L�
c1ðD_o

0Þ

¼
A

5

kT

jD_o0j3

�

mcðm
3
c þ 4m2

cmv � 2mcm2
v þ 2m3

vÞ

2ðm4
c þ 2m2

cm2
v þ 2m4

vÞ

1

8><
>:

�

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

m2
c

m2
v

jD_o0jEr

ðkTÞ
2

s !
exp

3ðDF � EgÞ

2kT

�

�
Er

kT
1þ

mrmc

m2
v

� �
þ

mc

mv

D_o0

kT

�
;

ffiffiffiffiffiffi
mc

mv

r
f cð0Þf c �

mcmr

m2
v

D_o
kT

� �

�f v �
mr

mv

D_o
kT

� �
;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð21Þ

and for the short-wavelength tail of the line
(D_o040):

Lþ
c1ðD_o

0Þ ¼ A
kT

ðD_o0Þ
3

1

2

1

8<
:

�

exp
3ðDF � EgÞ

2kT
�

Er

kT
�

D_o0

kT

� �
;

ffiffiffiffiffiffi
mc

mv

r
f cð0Þf c

mr

mc

D_o
kT

� �
f v

mr

mv

D_o
kT

� �
:

8>>>><
>>>>:

ð22Þ

Expressions (21) and (22) are positively defined at
any ratio of the effective masses and, in compar-
ison with expressions (19) and (20), show a slower
decay, which ensures positiveness of the tails of the
resulting line shape function.
As the numerical calculations show, the approx-

imations obtained for components of the spectral
line yield a sufficiently good approach where
detuning D_o04kT (Fig. 1). For the emission
transitions with ErokT , the dominating con-
tribution to the broadening at the long-wave-
length spectrum side (jD_o0jbkT) is given by
the recombination in electron–hole pairs with
transfer of the excess momentum to another
electron (upon the electron–hole Coulomb
interaction), Lc1ðD_o0Þ, and in the short-wave-
length part of the spectrum (D_o0

bkT)—with
transfer of the excess momentum either to an
electron or to a hole: Lc1ðD_o0Þ and Lv1ðD_o0Þ,
respectively.
5. Extrapolation of the emission line shape function

near the resonance

Exponential and power factors are clearly
distinguished in expressions (19)–(22); these fac-
tors originate from the statistical and quantum-
mechanical properties of a many-body system. The
exponent of the exponential multiplier, which is
due to statistical factor (15), includes the minimum
sum of the energies of interacting carriers at which
the difference between the energies of the initial
and final many-particle states (with regard to the
quasi-momentum conservation) corresponds to
the specified energy detuning from the center of
the emission line, D_o0. In the other multiplier, the
part with the exponent of 2 is due to the use of
perturbation theory, while the remaining part is
related to the form of matrix element of the
Coulomb interaction (17). Thus, the spectral-line
tails calculated by the above method would
formally coincide with the Lorentzian function if
the matrix element was assumed to be constant
and the quasi-momentum conservation law was
disregarded.
Therefore, we perform restriction of the spectral

line in the region of small detunings by analogy
with the Lorentzian shape and matching of the
exponential factors for positive and negative
detunings as in Ref. [3]. Assuming that the total
intensity of the emission line is the same as in the
one-electron approximation for direct radiative
transitions, we write the form factor of homo-
geneous broadening for the nondegenerate case
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as follows:

F ðD_o0Þ

�
Ry

ffiffiffiffiffiffiffiffi
mcmv

p

me�2
exp

DF�Eg

2kT

� �
kT

ðg2þðD_o0Þ
2
Þ
3=2

1
5
exp mc

mv

D_o0

kT

� �
þ 14

13
exp D_o0

kT

� �� ��1
þ 5

26
exp D_o0

kT

� �� � .
ð23Þ

Here, we assumed that mvbmc and excluded the
exponential and Bessel factors, which only weakly
depend on the energy of the states, from the long-
wavelength part on the profile. The parameter g is
found from the normalization condition in which
integral (23) over all energies of emitted photons is
equal to unity. Numerical analysis of spectral line
shape by direct solution of Schrödinger equation for
3–5 interacting particles [16] showed good agreement
with the result obtained by the method described
above. Calculations were performed for a two-
dimensional system with the electron–electron and
hole–hole Coulomb interactions. Inclusion of the
electron–hole Coulomb interaction into considera-
tion is limited by computational difficulties.
At low excitation levels, when the emission

decay near the resonance is mainly due to the
power factor, the parameter g can be expressed
analytically, i.e.,

g2 � 2:05 �Ry

ffiffiffiffiffiffiffiffiffiffiffi
mcmv

p

me�2
kT exp

DF � Eg

2kT

� �
. (24)

The decay of the spectral line near the resonance at
gokT is mainly due to the quantum-mechanical
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factor. At g4kT , the statistical factor plays the
dominant role. For the energies of photons
D_o0og, when the effect of artificial normalization
is significant, the main reason for the emission-line
broadening due to Coulomb interaction is the
splitting of the energy levels of many-particle
states.
The estimations of functional dependencies of

the line in the degenerated case can be made with
the following expression:

F ðD_oÞ � Ry

ffiffiffiffiffiffiffiffiffiffiffi
mcmv

p

me�2
Geff ðD_oÞ
f cð0Þf vð0Þ

�
kT

ðg2 þ ðD_oÞ2Þ3=2
, ð25Þ

where the function Geff ðD_oÞ is found from the
relation

1

Geff ðD_oÞ
¼

1

G�ðD_oÞ
þ

1

GþðD_oÞ
. (26)

The functions G� and Gþ include statistical
factors of dominant components of the emission
line at long- and short-wavelength sides of the
spectrum,

G�ðD_oÞ ¼
1

5
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The non-zero energies in the Fermi–Dirac func-
tions correspond to minimal energies of particles,
one of which after Coulomb interaction (3) has
zero momentum. Such a replacement ensures the
limiting transformation of resulting line (25) back
to expression (23) at decrease of the excitation
level. As can be seen in Fig. 2, the approximations
fit the numerical data well in the line tails when the
emission intensity decreases by more than order of
magnitude.
6. Discussion

The results of calculations of the homogeneous
broadening form-factor for different temperatures
are presented in Fig. 3. We may conclude the
following:
(1)
 The emission line shape function has asym-
metric exponentially decaying tails. The long-
wavelength side (at the deep tails) decays
slower than the short-wavelength one. The
asymmetric exponential behavior of the
decay is related to the statistical energy
distribution of current carriers and the fact
that the laws of conservation of energy and
momentum are satisfied upon interaction.
Such a behavior is not related to the form of
the interaction matrix element. Therefore, a
similar exponential factor is present in the line
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shape functions for quantum wires and bulk
semiconductors.
(2)
 The emission line broadens as the excitation
level increases. Mathematically, the broaden-
ing of an emission line is expressed by the fact
that the integrated-emission intensity increases
proportionally to expðDF=kTÞ, while the emis-
sion intensity in the line tails is expð3DF=2kTÞ.
Taking into account the fact that the growth in
the excitation level leads to an increase in the
number of particles in the bands, the line
broadening is explained as follows: the increase
in the rate of the three-particle processes
(which is proportional to the third power of
the number of particles n3) anticipates the
increase in the rate of direct radiative transi-
tions involving two particles (which is propor-
tional to n2).
(3)
 Asymmetry of the emission line is more
essential at low temperatures, where equality
of the range of many-body energy level
splitting g and thermal energy kT is realized
at a smaller relative excitation level ðDF �

EgÞ=kT (see expression (24)). Therefore the
shape of the spectral line is greatly influenced
by the statistical factor (see Fig. 3a).
The qualitative features of the emission line listed
above are in accordance with results of experi-
mental works [3,2]. Although the quantitative
comparison with the experiment requires more
detailed consideration of the peculiarities of the
energy-band structure, we have presented some
data of spectral line widths and logarithmic
decrements of the tails (Fig. 4) obtained within
the framework of the parabolic band approxima-
tion used.
Values of the logarithmic decrement for the

long-wavelength side of the spontaneous radiation
spectrum in QWs of the GaInAs–GaAs hetero-
system, obtained in work [3] at temperatures 4.2,
77, and 286K under high excitation, were accord-
ingly made 3.3, 6.9, and 8.5meV. Numerical
calculations for the same conditions gave 0.9, 6,
and 15meV. The largest discrepancy is observed at
the temperature of 4.2K.
However, if we take into account that the

temperature of electron gas differs from the
temperature of the crystal lattice and, as it has
been estimated by authors [3] from damping the
short-wavelength side of the spectrum, 22K, the
theoretical logarithmic decrement of the long-
wavelength spectrum side would be about
2.4meV that is close enough to the experimental
data. The observed weakness of the dependence of
the logarithmic decrement on the current at small
temperatures can be explained by the increase of
the degeneracy factor of the electron–hole system
ðDF � EgÞ=kT at cooling under conditions of
constant injection current.
In work [2] for QWs in the GaAs–AlGaAs

heterosystem at room temperature, the measured
logarithmic decrement for the long-wavelength
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side of the spontaneous radiation spectrum
changes from 9 to 12meV when variation of the
carrier concentration is in the range of
1011–1013 cm�2. Because of weak dependence of
the spectral line on the carrier effective masses, it is
also very close to the calculated data.
Note that here, the widths of spectral lines,

estimated with the use of the intraband relaxation
time of carriers, are quantitatively comparable to
the presented results, but have an opposite
dependence on the excitation level. As it was
concluded in work [1], at the non-equilibrium
carrier concentration of 1012 cm�2 the carrier
intraband relaxation time increases and, therefore,
the emission linewidth has to decrease. The former
feature has not been observed experimentally
[3,2,17]. In this case, the probability of optical
transitions is nearly equal in a wide energy range
and in the central part of the spectrum the optical
transitions can be considered as recombination
with no k-selection rule [18].
The effects of electron–phonon interaction, that

also result in line broadening [1,4,15], are not
included here. It is possible to extend the present
theory and find the phonon-related components in
addition to (19)–(22). For example, consideration
of carrier–LO phonon interaction will result in a
smooth line-shape function (not only in the delta-
like sidebands) if phonon dispersion is taken into
account.
7. Conclusion

The performed theoretical analysis of the emis-
sion line broadening at the Coulomb interaction of
carriers has shown that (i) exponential decays are
associated with statistics of current carriers energy
distribution, (ii) asymmetry of the line originates
from fulfilment of laws of conservation of energy
and momentum in the electron–hole system with
Coulomb interactions, and (iii) the emission-line
broadening with an increase in the excitation level
is explained by the fact that the increase in the rate
of the three-particle process, which determines the
intensity of the line tails, anticipates the rate of
direct radiative two-particle transitions, which
determine the intensity of the central part of the
spectral line.
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