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INTRODUCTION

The phenomenological theory of heat conduction assumes that the heat propagation velocity is
infinitely large, which is justified by computations of temperature fields in bodies under ordinary
conditions observed in practice. However, for rarefied media and nonstationary processes of high
intensity, one should take account of the fact that heat propagates at a finite velocity. Lykov
[1, p. 21] suggested a theory of finite heat and particle propagation velocities in capillary-porous
bodies, which implies that wr =

√
λ/ (cγτr), where wr is the heat propagation velocity, τr is the

time constant of the thermal flow, λ is the thermal conductivity, c is the specific heat, and γ is
the material density. As a rule, wr ∼= 150− 300 m/sec and τr ∼= 10−9 − 10−15 sec for gases, and the
effect of the finite heat propagation velocity on the heat transfer becomes observable in the case of
a supersonic flow. Then the heat equation has the form [1, p. 21]

q = −λ∇T − τr∂q/∂τ, (1)

where q is the heat flux density vector, T is temperature, and ∇ is the gradient operator.

STATEMENT OF THE PROBLEM

Suppose that we wish to find the evolution laws for the spatial temperature fields in an isotropic
half-space under mixed boundary conditions on the surface, where the discontinuity line is a circle
of radius R. According to (1), in the cylindrical coordinates r ≥ 0, z ≥ 0, the axisymmetric heat
equation of hyperbolic type has the form [1, p. 21]

1
r

∂

∂r

(
r
∂T (r, z, τ)

∂r

)
+
∂2T (r, z, τ)

∂z2
=

1
a

∂T (r, z, τ)
∂τ

+
1
w2
r

∂2T (r, z, τ)
∂τ 2

, r > 0, z > 0, (2)

where a > 0 is the temperature conductivity and τ > 0 is the time variable.
We assume that the thermal characteristics (a, λ, c) are independent of temperature in a given

temperature range, and we deal with their average values; this approximation can always be justified
if appropriate new variables are introduced (e.g., see [2, p. 15 of the Russian translation]).

The boundary conditions at infinity have the form

∂T (r,∞, τ)/∂z = ∂T (∞, z, τ)/∂r = 0, r > 0, z > 0, (3)

the symmetry condition is
∂T (0, z, τ)/∂r = 0, z > 0, (4)

and the mixed boundary conditions on the surface z = 0 have the form

−∂T (r, 0, τ)/∂z = λ−1q(τ) + C−1w−2
r ∂q(τ)/∂τ, 0 < r < R, (5)

T (r, 0, τ) = 0, R < r <∞, (6)
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where C = cγ is the thermal capacity per unit volume and q(τ) is the heat flux density in the
domain 0 < r < R on the surface z = 0 of the half-space.

Let us consider the homogeneous initial conditions for Eqs. (2) and (5):

T (r, z, 0) = ∂T (r, z, 0)/∂τ = 0, r > 0, z > 0, (7)
q(0) = 0. (8)

By applying the integral Laplace transform (e.g., see [3, p. 63])

T̄ (r, z, s) = L[T (r, z, τ)] =

∞∫
0

exp(−sτ)T (r, z, τ)dτ, Re s > 0,

q̄(s) = L[q(τ)] =

∞∫
0

exp(−sτ)q(τ)dτ, Re s > 0,

we reduce problem (2)–(8) to the problem

1
r

∂

∂r

(
r
∂T̄ (r, z, s)

∂r

)
+
∂2T̄ (r, z, s)

∂z2
= s∗T̄ (r, z, s), r > 0, z > 0; (9)

∂T̄ (r,∞, s)
∂z

=
∂T̄ (∞, z, s)

∂r
=
∂T̄ (0, z, s)

∂r
= 0, r > 0, z > 0; (10)

− ∂T̄ (r, 0, s)
∂z

= q̄(s)
(
λ−1 + C−1w−2

r s
)
, 0 < r < R; (11)

T̄ (r, 0, s) = 0, R < r <∞, (12)

for Laplace transforms, where s∗ = w−2
r s2 + a−1s; from now on, the condition Re s > 0 on the

L-parameter is omitted for brevity.
Note that in the general case of nonhomogeneous initial conditions [unlike the homogeneous

conditions (7) and (8)], the corresponding Laplace transforms of the right-hand sides of (2) and (5)
have the form

L

[
a−1∂T (r, z, τ)

∂τ
+ w−2

r

∂2T (r, z, τ)
∂τ 2

]
= s∗T̄ (r, z, s) −

(
w−2
r s+ a−1

)
T (r, z, 0)

− w−2
r

∂T (r, z, 0)
∂τ

,

L

[
λ−1q(τ) +C−1w−2

r

∂q(τ)
∂τ

]
=
(
w−2
r s+ a−1

)
q̄(s)− C−1w−2

r q(0).

Without loss of generality, in the following, we consider the case of the homogeneous initial
conditions (7) and (8).

Assertion. The solution of the original heat transfer problem (2)–(8) can be expressed as

T (r, z, τ) =
1

2πi

σ+i∞∫
σ−i∞

exp(sτ)

∞∫
0

pJ0(pr)
exp(−zψ(p, s))

ψ(p, s)

R∫
0

ϕ̄(t, s) sin(tψ(p, s))dt dp ds,

r ≥ 0, z ≥ 0, τ > 0, Re s > σ > 0,

(13)

where ψ(p, s) =
√
p2 + w−2

r s2 + a−1s.

Proof. If we apply the infinite integral Hankel transform (e.g., see [3, p. 64])

T̄H(p, z, s) = H
[
T̄ (r, z, s)

]
=

∞∫
0

T̄ (r, z, s)J0(pr)r dr
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to Eq. (9), where J0(pr) is the Bessel function of a real argument, then we obtain the ordinary
differential equation

d2T̄H(p, z, s)/dz2 −
(
p2 + s∗

)
T̄H(p, z, s) = 0, z > 0,

whose particular solution, in view of the boundary conditions (10), can be rewritten in the form
[3, p. 166] T̄H(p, z, s) = D̄(p, s) exp

(
−z
√
p2 + s∗

)
, z > 0, where D̄(p, s) is an unknown analytic

function to be determined.
By applying the inversion formula for the Hankel transform, we find a solution of the problem

in terms of L-transforms in the form

T̄ (r, z, s) =

∞∫
0

D̄(p, s) exp
(
−z
(
p2 + s∗

)1/2
)
J0(pr)p dp, r > 0, z > 0. (14)

Using the mixed boundary conditions (11) and (12), from the expression (14) with z = 0 for the
unknown function D̄(p, s), we obtain the paired integral equations with the L-parameter:

∞∫
0

D̄(p, s)
(
p2 + s∗

)1/2
J0(pr)p dp = q̄(s)

(
λ−1 + C−1w−2

r s
)
, 0 < r < R,

∞∫
0

D̄(p, s)J0(pr)p dp = 0, R < r <∞,

(15)

where the existence and convergence of the corresponding integral of q̄(s) are assumed.
The solution of the paired integral equations (15) can be found with the use of the ansatz

D̄(p, s) =
(
p2 + s∗

)−1/2

R∫
0

ϕ̄(t, s) sin
(
t
(
p2 + s∗

)1/2
)
dt, (16)

where ϕ̄(t, s) is an auxiliary unknown mapping function. With the ansatz (16), the second equa-
tion in (15) is satisfied automatically, regardless of the choice of the function ϕ̄(t, s), since the
corresponding discontinuous integral vanishes for R < r <∞ :

R∫
0

(
p2 + s∗

)−1/2
sin
(
t
(
p2 + s∗

)1/2
)
J0(pr)p dp

=
{ 0 if 0 < t < r

(t2 − r2)−1/2 cos
(
t (s∗ (t2 − r2))1/2

)
if 0 < r < t, Re

√
s∗ > 0.

If we substitute (16) into the first equation in (15), use the relation

pJ0(pr) = r−1d (rJ1(pr))/dr,

and integrate the resulting relation with respect to r from 0 to r, then we obtain an equation for
the auxiliary analytic function ϕ̄(t, s):

r∫
0

(
r2 − t2

)−1/2
tϕ̄(t, s) exp

(
−
(
s∗
(
r2 − t2

))1/2
)
dt

−
R∫
r

(
t2 − r2

)−1/2
tϕ̄(t, s) sin

((
s∗
(
t2 − r2

))1/2)
dt+

R∫
0

ϕ̄(t, s) sin
(
t
√
s∗
)
dt

= 2−1q̄(s)r2
(
λ−1 + C−1w−2

r s
)
, 0 < r < R.

(17)
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It is noteworthy that methods for finding the analytic function ϕ̄(t, s) in equations like (17) were de-
scribed, e.g., in [3, p. 196], and in the derivation of (17), we have used the value of the discontinuous
integral

∞∫
0

sin
(
t
(
p2 + s∗

)1/2
)
J1(pr)dp

=

 r−1
[
sin
(
t
√
s∗
)

+ t (r2 − t2)−1/2 exp
(
−(s∗ (r2 − t2))1/2

)]
if 0 < t < r

r−1
[
sin
(
t
√
s∗
)
− t (t2 − r2)−1/2 sin

(
(s∗ (t2 − r2))1/2

)]
if 0 < r < t, Re

√
s∗ > 0.

Finally, after returning to Eqs. (14) and (16) and applying the inverse Laplace transform, we have
the solution of the original problem in the form (13). The proof of the assertion is complete.

If the heat propagation velocity tends to infinity, wr → ∞, then formula (13) degenerates into
the solution of the parabolic heat equation for the corresponding mixed boundary conditions.
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