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METHOD OF PAIRED INTEGRAL EQUATIONS WITH 
L-PARAMETER IN PROBLEMS OF NONSTATIONARY 
HEAT CONDUCTION WITH MIXED BOUNDARY 
CONDITIONS FOR AN INFINITE PLATE 

P. A. Mandrik UDC 517.968,536.24 

For solving a nonstationary equation of  heat-conduction in cylindrical coordinates with mixed discon- 
tinuous boundary conditions prescribed on one o f  the surfaces (z = O) of  an infinite plate, a method oJ 
paired integral equations with L-parameter is used. Moreover, on the other surface (z = h) of the plate 
the boundary conditions are prescribed unmixed. 

It is required to solve the heat-condition equation for  the excess-temperature function: 

Orr (r, z, T) + 1 Or (r, Z, "C) + 0_. (r, z, x) = 1 Or (r, Z, z ) ,  
r 

r > 0 ,  x > 0 ,  0 < z < h ,  (1) 

where r and z are the cyl indrical  coordinates, ~ is the t ime, a > 0 is the thermal diffusivity coefficient,  0(r, z, 
~) = T(r, z, x) - To, and To = const is the initial temperature  of  the plate. 

Prescribed are the initial condition 

0 (r, z, 0) = T (r, z., 0) - T O = 0 ,  (2) 

a homogeneous boundary condi t ion at z = h 

and mixed boundary condit ions at z = 0 

0 (r, h, x) = 0 (3) 

q* (r, x) 
- O : ( r , O , ' c ) - - - - - ~ = q ( r , z ) ,  0 < r < R ,  (4) 

0 (r, 0 , ' 0 = 0 ,  R < r < ~ o ,  (5) 

where )v > 0 is the thermal conduct ivi ty coefficient. 
Applying the H a n k e l - L a p l a c e  transformation to p rob lem (1)-(5) of  the form 

¢<a c o  

0.  Co, s) =J" j'0 (r, 
0 0 

exp ( -  sx) Jo (pr) rdrd'c , Re s > 0 ,  (6) 

where Jo(pr) is the Bessel funct ion of  the first kind and zero order, and taking into account the boundedness 
of  the temperature 0(r, z, "c) on  the axis r = 0 and for r----> ~o, the solution of the heat-conduction equation (1) 
in the region of  L-transforms can be written [ 1] in the fo rm 
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sinh[(h-z)~(p2+S 1 
0 (r,z,s)= T(r, z,s)- T0 = fA (p,s) Jo (pr)dp, (7) 

m 

where A(p, s) is the unknown analytical function. Here and henceforth it is assumed that Re s > 0, and, for 
brevity, this is omitted in the representation. 

After application of the L-transformatioh to conditions (4) and (5) the mixed boundary conditions for z 
= 0 will take the form 

-O:(r,O,s)=q(r,s), 0 < r < R ,  (8) 

0 (r, 0, s) = 0 ,  R<r<~o. (9) 

Assuming in formula (7) z = 0 and taking into account conditions (8) and (9), it is possible to pass to 
paired integral equations with the L-parameter: 

f ~- (p, s) ~J/p2 + S ) c o t  2+ jo(Pr)dp=q(r,s), 0 < F < R ,  (10) 

0 

fA(p,s)Jo(Pr)dp=O , R < r < o ~ ,  (11) 

0 

from which it is necessary to determine the analytical function A(p, s). 
To solve the paired integral equations (10) and (l l), we introduce the new analytical function q0(t, s) 

with the aid of the relation [ 1 ] 

A (17, s) = /9 ~ ~ (t, s) sin t 2 + dt. (12) s) 0 2+ a 

On substitution of (12) into the second paired equation (11), we can easily verify that Eq. (11) is read- 
ily satisfied according to the value of the discontinuous integral 

PJo(Pr) sin t 2+  d p = .  
0 ~  

r lJ2 / 
i f - F -  r ' 

0 < t < r ,  

0 < r < t .  

(13) 

Substituting (12) into the first paired equation (10), we arrive at the integral equation with L-parameter 
for determining the unknown t0(r, s): 
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R 

i ~ e x P 0  41s (2 - t2 ) ) )d t - !  

+ I (t, s) sin t at 
0 

×sinlt41p2+S)l J` 

~/t 2 _ r 2 sin (t 2 - r )  dt+ 

R oo exp l-- h 4 ( p 2  + s ) /  
× 

r 

(pr) dp = S q (p, s) pd p ,  O < r < R .  

0 

(14) 

Equation (14) is the analytical basis for finding the unknown function q)(r, s), but it is not very con- 
venient for solution. Therefore, we reduce (14) to an integral equation similar to the Fredholm equation, but 
with the L-parameter. For this purpose, replacing r by ~t in Eq. (14), we multiply the left- and right-hand sides 

of the equation by the integrating factor cos ('~s--(r2- la 2 ) ) 2 1 a / ~  la 2) and then integrate the resulting equa- a 

tion for la going from zero to r. As a result we have 

R 

o 

0 < r < R ,  (15) 

where 

K (r, p, s) - - - 
p - r  p + r  

h 

(./ 

exp ( -  x--) I c o s / ~ - ~  x ) -  cos (-~--5 x)] dx • 
sinh (x) [ 

1T,~, 0 ~/ r2 - ~t2 d~t. 

We note that for h --~ oo we directly obtain a solution in the region of L-transforms from formula (7), 
the paired integral equations with the L-parameter from formulas (10) and (11), and the corresponding integral 
equations for ~0(t, s) from Eqs. (14) and (15) for an isotropic semispace with the mixed boundary conditions 
(8) and (9) at z = 0. 

Thus, the problem set is actually solved. The main difficulty of calculating the corresponding tempera- 
ture fields in an infinite plate with the mixed boundary conditions (4) and (5) and unmixed condition (3) con- 
sists of the determination [2] of the analytical function ~p(r, s) from Eq. (15). 

In local means of heating the body surface through a circular regi_on 0 < r <__R, z = 0 the heat-flux 
density q*(r, s) = L[q*(r, "~)] can be represented in the form of the product q*(r, s) = W(s)q(r), where W(s) = 
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L[W(x)] is the transform of the specific power of the heat flux that for the original function W(x) depends only 
on time, and q(r) is the distribution of the dimensionless heat flux along the cylindrical coordinate r in the 
circular region 0 < r < R. 

Then Eq. (15) can be written in the form 

R r q (B) COS 

d-~* (r. s) - I f "~* (B.s) K (r. B. s) d , :  _ ~  ~ 
0 / ~ A S O  4 r 2 - B 2 

1 4 ( s  (r2 - B2))IB 

d B , O < r < R ,  (16) 

where 

g m 

tp (r,s) - Y ( r ' s ) ,  R e s W ( s ) > O .  (17) 
sW (s) 

Next, we represent the analytical function tp*(r, s) in the form of a series [3]: 

* (r, s) = exp R tp n (r) (~S) n-2", (18) 

n=0 

we substitute this expression into Eq. (16), expand the kernel K(r, pt, s) and the well-known function on the 
right-hand side of Eq. (16) into the corresponding series, and perform operations of  multiplication of the series 
obtained. As a result, we come to the following equation: 

o o  

n = O  

n r 

= 2_2_ Z Z (~s)  Ann, q(B) 
n--0 m--0 0 

n R 

± Z Y (£)" - - - g  

n=O m=O 0 

1 ~ ~ (~s-s 16h [mD., . ,(B,r)-E,. j(~t ,r)]tpn ( ) 
- -  -"--q---z--'- 'z--------4-g-- . . . .  dla ,O < r < R . 

h n=0 m=l k---O I---0 0 [4h'm- + (B + r)-] [4h-m- + (B - r) '] 

(19) 

where 

• m ! (n  - m )  ! ( ~ - - ) "  ' F k - I  - (k  - l ) ! 

C m(p, r) m ! ( '~a) m [(g + r)m-I ( g -  r)m-l] ' 

Dm,/(B, r) = 
cos 1 -~ { [4h2m2 + (P- + r) 2] × 

4h 2 l ! (~aa)t 
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X (IX -- r) I - [4h2m 2 + (IX - r)21 (It + r) l} ; 

Era, 1 (IX, r) = {[4hZm 2 + (IX - r) 2] × 
8h 31 ! ({-ffa)~ 

x (Ix + r) 1+1 - [4h2m 2 + (IX + r) 2] (ltl - r)l+l} • 

Thus, at n = 0, from Eq. (19) we can write the l~redholm integral equation of the second kind to determine ¢0(r): 

¢P0 (r) = 
i R 2_2 q (gix) ~ dix _ r 

co 

16h4m 
x E dix. 

m=l [4h2m2 + (Ix + r)2] [4h2m2 + (Ix - r)2] 

The remaining necessary values of  q)i(r), i = 1, 2, are also determined from formula (19) on equating 
the terms at the same powers of ~ on the left-hand and right-hand sides. 

Substituting q)n(r) in&o series (18), we find_the values of q)*(r, s) and, consequently, from formula (17) 
we determine the values of cp(r, s). Further, using q)(r, s) in formula (12), we find the value of A(p, s) and then 
also the transform of the unknown temperature from formula (7). Finally, applying the Laplace integral inver- 
sion formula, we can find directly the original function of the excess temperature 0(r, z, x) = L-l[0(r, z, s)]. 
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