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On the basis of  the method developed, the solutions of four problems of mathematical physics are obtained 

for an infinite plate (a plane layer of thickness z = h) with assignment of mixed discontinuous boundary 

conditions (BC)  on one of the surfaces z = 0 of the plate and unmixed BC on the other surface z = 17. 

In the present  work a development  and  extension of the method of paired integral  equations are  sugges ted  

to solve parabolic part ial  differential  equations with mixed boundary  conditions (BC). A circle r -- R on the surface  

z -- 0 is a line of discont inui ty  of mixed  BC. Mixed discontinuous BC in problems of mathemat ica l  physics a re  taken  

to mean  problems different  from those of the Dirichlet and N e u m a n n  type. In o ther  words,  the t e rm "mixed  BC" 

means that  within the limits of variat ion of one variable (in this case, within the limits of variat ion of the cylindrical  

coordinate  r on the surface  z -- 0 of the plate) heterogeneous (mixed) BC of the first and  second kind can opera te  

in the cor responding  ranges  of variat ion of this variable (see Fig. 1). On the o ther  plate surface z = h the two types  

of unmixed  BC, namely ,  e i ther  of the first or  of the second kind, are  considered.  

Below we show that  a solution of the heat -conduct ion equation for an  infinite plate under  the action of 

mixed BC on one of its surfaces z -- 0 is reduced in a classical form to a solution of the corresponding integral  

equations in the region of L- t ransforms.  

P rob lem No. 1. It is required to solve the differential  equation 

Orr (r, z, v) + r-lOr (r, z, ~) + Ozz (r, z, ~) = a - lo t  (r, z, r)  , 0 < r < oo , 0 < z < h ,  r > 0 ,  (1) 

where r and  z a re  cylindrical  coordinates;  v is the time; a > 0 is the thermal-dif fus ivi ty  coefficient; O(r, z, T) = T(r, 

z, r) - T O (To = const is the initial t empera tu re  of the infinite plate at T = 0). 

Mixed BC for Eq. (1) are given at z = 0: 

O ( r , O , v ) = f ( r , v ) ,  O < r < R ,  z = O ,  " t ' > O ;  (1.1) 

- O z ( r , O , z ) = O  , R < r <  oo, z = 0 ,  T > 0 .  (1.2) 

For f(r,  T) > 0 we a s sume  the existence of the Laplace integral. 

A BC of the first kind is prescr ibed on the surface z = h: 

O ( r , h , T ) = O ,  0 _ < r <  oo, z = h ,  ~ > - 0 .  (1.3) 

The  origin of coordinates  r = z = 0 is selected at the center  of the circle r = R on the surface z = 0. 
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Fig. 1. Diagram notat ion for regions of boundary  condit ions in problems Nos.  

1-4 on the surfaces of an  infinite plate of thickness h. In problems Nos. 1 and  

3 mixed  BC (1.1) and  (1.2) are prescr ibed on the surface  z -- 0, and  in 

problems Nos. 2 and  4, mixed BC (2.1) and  (2.2) on it. Unmixed  BC (1.3) 

and (3.1) can opera te  on the other  surface z = h. 

Taking  into account  boundedness  conditions for the t empera tu re  on the axis (r = 0, 0 < z < h, T > 0) and  

at infinity ( r -~ ~ ,  0 < z < h, ~- > 0) and  applying the L - t r an fo rm to Eqs. (1) and  (1 .1)-(1 .3) ,  we p resen t  the 

solution for the t ransform 0(r, z, s) = L[O(r, z, 3) ] = L[-T(r, z, 3) - T O ] in the form 

0 (r, z, s) = T o (r, z, s) - --r~ = ] ~ (p, s) 
s 0 

'in' z></"+:)] 

' ~  

JO (pr) dp, Re s > 0 ,  (1.4) 

where Jo(pr) is a Bessel function of the first kind of zero order;  A(p, s) is the unknown func t ion - t r ans fo rm,  which 

must  be de termined.  

When h -~ oo, from Eq. (1.4) we obtain a solution for 0(r,  z, s) = L I T ( r ,  z, ~) - TO] of a semiinf in i te  body  

[11: 

0 ( r , z , s )  lh_,= = A ( p , s )  exp - z  + Jo(Pr) dp" 
0 

(1.5) 

and  the derivative with respect  to the normal  to the surface 

0 
Jo (pr) ap. (~.6) 

at z = 0 is as follows: 

_Oz(r,O,s)= ~ -~(p,s) V[(p2+S) jO(Pr) dp. (1.7) 0 
According to Eq. (1.4), the excess value of the t empera tu re - t r ans fo rm at z = 0 has the form 
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O(r,  0, s) = ~0 -A(p's) tanh (hV(p2+S))  JO(pr) dp=~O [1 -g(p's)]'A(p's)JO(Pr)dp' (1.8) 

where 

(p, s) = (1.9) 

is a known function. 

When h --, oo and ~(p, s) --, 0, we find the well-known solution for a half-space at z -- 0 with mixed BC 

(1.1) and (1.2) [1 ]. Taking into account mixed BC (1.1) and (1.2) on the surface z -- 0, upon applying the 

L- t ransform to them, from Eqs. (1.7) and (1.8) we obtain paired integral equations in the region of L- t ransforms,  

from which the unknown function A(p, s) must be determined:  

.~ [1 - g ( p , s ) ] - A ( p , s ) J O ( P r ) d p = T f ( r , s ) ,  0 < r <  R ,  Res  > 0 ;  
o 

(1.10) 

~ ~A(p,s) V(p2+S)Jo(Pr)dp=O , R<r< oo, R e s > 0 ,  (1.11) 
0 

where the known function is 

oo 

7 ( r , s ) = L I f ( r , ~ ) l = f  e x p ( - s T )  f ( r , r ) d r ,  
o 

rE(O,R), z = 0 ,  r > 0 .  

To solve Eqs. (1.10) and (1.11), we introduce another  unknown function ~1 (t, s) by means of the relation 

It turns out that  this substitution ensures satisfaction of the homogenei ty  of one of paired equations (1.11), since 

substituting Eq. (1.12) into (1.11), we have (R < r < co, Re s > 0) 

o o  

f No (pr) dp o 
R 
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since [1-4] 

~ ~l't(l,s) dl ~ PJo(Pr) sin ( t ~ ( p 2 + S ) )  
o o v ( ~ + s )  

d p = O ,  ( 1 . 1 3 )  

O, O < t < r ,  

Vp--sTz 
, O < r < t .  

( 1 . 1 4 )  

In order to obtain now an equation for determining the function ~l (t, s), we substitute the value of A(p, 
s) given by formula (1.12) into the first paired integral equation (1.10): 

R 
7 ~ ( p , s )  [I - g ( p , s ) ] J 0 ( P r ) d p =  f ~1 (t,s) dt 7 
0 0 0 

PJo (pr) _ 

o o , / ( ~ + s )  

rf ~l(t,s) dt 7 PJo(Pr) ( V ( p 2  ~))  

+ ~f ~l(t,s) dt ~ PJ~ cos (tV(p2+S)) dp_ 

R (pr) ( V(p2 s)) 
f ~z (t, s) dt 7 g, (P, s) PJo cos t + = 

Y ~1 (t, s) ar - f ~ (t, s) 
o ~ z - z 5  z ~ VW2--r r )  

d t -  

o 0 , / ( ~ + : )  
=](r,s), 0 < r < R ,  R e s > 0 .  (1.15) 

In the derivation of Eq. (1.15) the value of the following discontinuous integral [1-4 ] is used: 
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PJo(Pr) cos ( t 4 ( p 2 + S ) )  dp= 
sin 

47Z-:TZ 

, 0 < l < r ,  

, 0 < r < t .  

(1.16) 

Equation (1.15) is already a basis for determination of the unknown analytic function ~1 (t, s). The solution 
of this equation can be obtained by representing this function in the form of a functional series I1 ] expanded in 

half-integer powers of the parameter s. However, in the present work we will find another way to solve this equation. 

Let us assume that there is a solution for Eq. (1.15). We reduce this equation to a simpler form, namely, 
a Fredholm-type equation of the second kind for real variables that contain the complex parameter s. For this, we 

r ep l ace  r by  /.t in f o rmu la  (1 .15 ) ,  mu l t i p ly  bo th  i ts  s ides  by  the  i n t e g r a t i n g  f a c t o r  cos 
(X/s/a(r2 -/t2)).21udt~/~r2- kt2 and integrate the expression obtained over/z within the limits from zero to r: 

f f exp ~ dt- 
o ~ o v ~  

r COS / 
f 
0 

2~d~ 

• f sin dt - 

- f f T1 (t, s) dt 7 g (P, s) • 
0 ~ 0 0 

x PJo(PtQ c o s ( t V ~ + s / a )  d p =  f O< r < R  R e s  > 0 
~ - -  , , �9 

v~z+ s/a o ~ 0.17) 

In the left-hand side of Eq. (1.17) we change the order of integration by using the well-known Dirichlet 
formula (for iterated integrals). This leads us to the following integral equation (0 < r < R, Re s > 0): 

• 

rf "T1 (t, s) dt - ~ f T1 (t, s) dt Si (t 
0 0 

+ r ) ] - S i  [ g [ ( ~ ) ( t - r ) ]  +~ ~(p,s) 

2 cos ( t g f ( p 2 + S ) l  sin Irg[(p2+-~) 

2 s =J~ 
p + - -  0 ~ (1.18) 

a 
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where Si(~) = f (sin x / x )dx  is the integral sine [2-7 1. 
o 

In deriving Eq. (1.18) we use the values of the following integrals: 

r (,/(:) ) 
f = ar - 2 Si ~ (1.19) 
o e-/z =Sz ~ - - c - ~  

exp 2~d~ 

(r ~ )  co~ (r ~ '  
, ( r  f = Si (r + t) + 
o r  e - T : ~  

sin 

+ S i ( r  ( r - t ) ) - 2 S i ( r  ~ ' , (1.2o) 

. 

f = s i  ( t + r )  - S i  ( t - - r )  , 
o r  ~ 

(i.21) 

sin 2~d~ 

(,/(~) Jo (p/x) 2/xd/x 

r 

f = (1.22) 

COS 

Differentiation of equality (1.18) with respect to r gives an integral equation in the region of L-transforms 
(with the parameter s) for determining the unknown function ~ol (r, s): 

1 R 
~1 (r, S) -- -~ f ~I (P, S) K1 (r, p, h, s) dp = F1 (r, s) ,  0 < r < R ,  Re s > 0,  

0 
(1.23) 

where the kernel of integral equation (1.23) has the form 

"~1 (r, p,  h, s) = sin (p - r) x / s / a  + sin (p + r) ff s /a  + 
p - r  p + r  

+ hh cosh (x) cos x + cos x dx ; (1.24) 

and 
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2 d ~ (1.25) 
F1 (r, s) - Jr dr 0 

2~d~ 

is a known function in (0, R) at z = 0. 

Having substituted the value of ~1 (P, s) from Eq. (1.23) into (1.12), we find that 

{ } • F1 (t' S) + ~ f ~1 (/9' S) h'l (l' P, h, s) dp . (1.26) 
0 

Substitution of Eq. (1.26) into solution (1.4) and application of the inversion formula of the Laplace integral 
give the value of the temperature field in an infinite plate (i.e., the solution of Eq. (1)') with prescribed mixed BC 

(1.1), (1.2) and unmixed BC (1.3) in the form 

1 pdp 
0 (r, z, s) = T (r, z, r) - T O = ~-~ f exp (st) ds ~ Jo (pr) x 

• f cos t 
o 

+ at F1 (t, s) + ~ f ~1 (,o, s) 21 (t, p, h, s) dp , 
0 

r _ > 0 ,  O<_r<_ ~ ,  O < _ z < _ h ,  a > R e s > 0 ,  a = c o n s t ,  (1.27) 

where ~o 1 (/9, S) is the solution of integral equation (1.23) with the L-parameter s. 

When h --, ~ ,  the value of T1 (r, s) should be sought from integral equation (1.23), the kernel of which will 
have the form 

D 

lim K 1 ( r , p , h , s )  = K  1 ( r , p , s )  = 
hooo 

sin (p - r) ~/ s / a  sin (t9 + r) ~/ s / a  + (1.28) 
p - r  p + r  ' 

and the solution of Eq. (I) for a half-space (h --, oo) with assignment of mixed BC (1.1) and (1.2) is written from 
Eq. (1.27) as follows: 

1 a+i~ 7 ( 4 ( P 2  s ) )  0 (r, z, s) [h-,~ - 2~i f exp (st) ds exp - z + x 
a-ie~ 0 

{~ 1 R _ } 
X 1 ( t , s ) + ~  f ~1 (p,X) K l ( t , p , s ) d  p , O < _ r <  oo, R e x > 0 ,  r >_0. 

0 
(1.29) 
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When s --> 0 (r --, oo), from Eq. (1.29) we obtain the well-known stat ionary solutions of the Laplace equation [8-10] 
for a half-space with the corresponding mixed BCs at z = 0. 

Problem No. 2. It is required to solve Eq. (1) under  unmixed BC (1.3). The  initial t empera ture  field of the 

infinite plate is uniform and corresponds to problem No. 1, i.e., T(r, z, 0) = TO = const. 

The  mixed BCs at z -- 0 have the form 

-Oz(r,O,r)=-~f~, O<r<R, z = 0 ,  T , A > 0 ;  (2.1) 

0 ( r ,  0 , ~ ) = 0 ,  R<r<oo, z = 0 ,  T > - 0 ,  (2.2) 

where  q(r, z) > 0 is a prescribed function of the heat-f lux density in the circle r = R, z = 0 that  has the Laplace 

t ransform ~(r, s) = L[q(r, r) ]; 2 is the thermal-conductivi ty coefficient of the plate. 

The  solution of Eq. (1) in the region of L- t ransforms with BC (1.3) on the surface z = h is represented  by 

formula (1.4). Taking into account mixed BC (2.1) and (2.2), for determinat ion of the unknown function A(p, s) 

we come to the following paired integral equations: 

(p, s) p2 + JO (pr) dp = , 0 < r < R, Re s > 0 ,  
o 

(2.3) 

~-A(p's)tanh (hV(p2+S)l  J~ R < r <  oo, R e s > 0 .  (2.4) 

The  solution of these equations will be carried out by means of the substi tution 

A(p,s)= p 1 ~ ~2(t,s) sin ( tV[(p2+S))  
~ 

at.  (2.5) 

Just as for problem No. 1, it is not difficult to show that substi tution (2.5) ensures satisfaction of the 

homogenei ty  of Eq. (2.4) in accordance with the value of discontinuous integral (1.14). 

Substituting Eq. (2.5) into (2.3), we obtain an initial integral equation with the L-pa ramete r  to find the 

unknown function ~2(t, s) under  prescribed BC (2.1) and (2.2) on the plate surface z = 0: 

~ ~2(t's) dt{ o sin ( t V ( p 2 + S ) )  Jo (pr) pdp + 

+7 
o 

exp ( -hV(p2+S) )  sin (tV[(p2+~)) Jo (pr) pdp } = 

(r, s) 
= 2 , 0 < r < R ,  R c s > 0 .  (2.6) 
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Just  as in problem No. 1, we reduce Eq. (2.6) to an integral equation of the type (1.23). Using the well- 

known relat ion for Bessel functions pJo(pr) = (1/r)(d/dr)[rJl(pr)], which we subs t i tu te  into Eq. (2.6),  a n d  

integrat ing its left- and  r igh t -hand  sides over r within the limits from zero to r, we obtain: 

R 

r f "~2(t,s) dt 
0 0 

Jl (pr) dp + 

o 

(t, s) 
J 
o xrT-=3-z 

exp 

exp 

( - h V ( p 2 + S ) )  sin ( ' V ( p 2 + S ) )  

o gg-- z 

(pr) dp ] = 

+ f ~ 2 ( t , s )  sin t d t + r f  ~z(t ,s)  dt x 
0 o 

O0 

• 
0 

exp 

=~( q(p ,s )pdp,  0 < r < R ,  R e s > 0 .  
0 

(2.7) 

In the derivat ion of Eq. (2.7) we used the value of the following discont inuous integral  [ 1-4 ]: 

O r t sin s (t 2 _ r 2) 

, r > t ;  

t > r ;  

(2.8) 

Integral  equat ion (2.7) can a l ready  serve as a basis for de terminat ion  of the unknown function ~2(r, s) in 

the region of L- t rans forms .  For this, it is necessary  to represent  this function as the corresponding functional  series 

expanded  in ha l f - in teger  powers of the pa rame te r  s, as was done in [1 ]. 

Below we suggest  ano ther  way of de termining  the unknown function ~2(r,  s). By analogy with problem No. 

1, we replace r by p in Eq. (2.7), multiply the left- and r ight -hand sides of Eq. (2.7) by a s imilar  in tegra t ing factor  

to problem No. 1, and  then integrate  over dp within the limits from zero to r. As a result, we come to the following 

integral equation with the L-parameter :  
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1 R 
~ z ( r , s ) - ~  f ~2(I~  K2 (r, p, h, s) dp = F z ( r , s ) ,  0 < r <  R ,  R e s  > 0 ,  

0 
(2.9) 

where 

K 2 ( r , p , h , s )  = p - r  p + r  

h sinh (x) cos x - cos x 
hC-/7-d 

dx ; (2.10) 

the known function F2(r, s) E (0, R), z - 0 has the form 

~ 0  

(2.11) 

In deriving Eq. (2.9), we used the values of integrals (1.19)-(1.21) and the calculated i terated integrals 

1 r /~ 
- f f ~(p,s)pdp= 

o ~ o 

f ~ (/9, s) sin p d p ,  
0 

(2.12) 

f 2/x2 Jl  (p~t) d/~ = 
o 

= 2p -- ~)-~ - . (2.13) 

The value of Eq. (2.11) follows from Eq. (2.12) upon differentiation of the latter with respect to r with 

allowance for the constant factor n -1  and cancellation of the left- and r ight-hand sides of Eq. (2.9) by r. 

Substitution of the value of ~2(t, s) from Eq. (2.9) into Eq. (2.5) yields |he unknown function A(p, s) for 

the present problem: 

(p ,s )  = P 1 f sin t p2 + dt x 
o 
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{ ,R } x F2 (t, s) + ~ f ~2 (p, s) K2 (t, p, h, s) @ . 
0 

(2.14) 

Using Eq. (2.14) in solution (1.4) and applying the inversion formula of the Laplace integral ,  we obtain  

the value of the  t empera tu re  field O(r, z, T) at any  point of an infinite plate with ass ignment  of mixed BC (2.1) and  

(2.2) at z -- 0 and  unmixed  BC (1.3) at z = h: 

1 o+ioo 
0 (r, z, ~) = T (r, z, T) - T O = 2ari f exp (st)  ds x 

a-ioo 

x ~ Jo (pr) pdp 

0 sinh [hV(p2+S)] V(p2+s) 
• 

x f sin t + dt (t, s) + -~ f ~2 (P, s) KZ (t, p, h, s) dp , 
0 0 

O<r<_oo ,  T>_O, O<z<_ .h ,  a > R e s > 0 ,  a = c o n s t .  (2.15) 

where ~2(r, s) is the solution of integral equation (2.9) with the L - p a r a m e t e r  s. 
When h --- oo, the value of ~2(r,  s) should be de te rmined  from integral  equation (2.9), the kernel  of which 

will have the form 

lim K'2 (r ,p,  h, s) = K2 (r ,p,  s) = 
h ~  

sin (t9 - r) ~I s /a  sin (p + r) ~ s / a  
m 

p - r  p + r  ' 
(2.16) 

and the solution of Eq. (1) for a half -space (h --, oo) with ass ignment  of mixed BC (2.1) and  (2.2) is wri t ten f rom 

Eq. (2.15) as 

1 a+i~176 "~ ( V(S)) O ( r , z , T )  lh_.~ = ~  f e x p ( s r )  ds exp - z  p 2 +  
a- i~  0 

X 

x J~ pdp ~ sin (tV(p2+S)) dtx 

[F2 1 R X ( t , s ) + - ~  f ~2(P ,s )  K z ( t , p , s ) d  p , O<_r<_ oo, z___O, R e s > O ,  r>__O. 
0 

(2.17) 

When  s-- ,  oo (r--* oo), f rom Eq. (2.17) we obta in  the wel l -known s ta t ionary  solut ions of the  Laplace 

equation [8-10 ] for a half -space with the corresponding mixed BCs at z = 0. 

P rob lem No. 3. It is required to solve Eq. (1) with mixed BC (1.1) and  (1.2) on the surface z = 0 of a plate. 

The  initial condit ion is re ta ined as in problems Nos. 1 and  2. The  difference f rom them will be in the a s s ignment  

of unmixed BC (1.3) at z = h, which is represented  as 

O z ( r , h , T ) = O  , 0 _ < r <  oo, z = h ,  T>__O, (3.1) 

i.e., when z = h, 0 _< r < oo, and r > O, there is ideal heat insulation on this surface of the plate over the ent i re  

durat ion of heat  exchange.  
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The  solution of Eq. (11 in the region of L-transforms with mixed BC (1.1) and (1.21 on the plate surface 

z = 0 and unmixed BC (3.11 on the plate surface z = h for the excess tempera ture- t ransform 0(r, z, s) --- L[O(r, z, 
T) ] can easily be obtained in the following form: 

-O (r, z, s) = "T (r, z, s) - TO = ~ -B (p, s) Jo (Pr) dp, R e s  > 0 ,  (3.2) 

where B(p, s) is the unknown funct ion-transform that must be determined.  

When h --, ~ ,  from Eq. (3.2) we obtain solution (1.5) for a half-space [1 ]. Accounting for mixed BC (1.I)  

and (1.2) on the plate surface, upon applying the L-transformat ion to them, we come to the following paired integral 

equations with the L-parameter  s: 

B (p, s) Jo (pr) dp = f (r, s ) ,  0 < r < R ,  Re s > 0 ; (3.3/ 
0 

~-B(p's)  V ( p 2 + S )  tanh ( h V f ( p 2 + S ) )  JO(pr) R < r <  oo, R e s > 0 ,  (3.4) 

where the known funct ion-transform is 

] ( r , s ) = L [ f ( r , v ) ] ,  r~ (O,R) ,  z = 0 ,  r > 0  

To solve paired equations (3.3) and (3.4) we use the substitution 

at, (3.5) 

since it ensures satisfaction of the homogenei ty  of Eq. (3.4) for R < r < oo. 

After the substitution of Eq. (3.5) into Eq. (3.3), we have an integral equation in the region of L- t rans forms  

for finding the new unknown function ~3(r, s): 

0 ~ e x p  - ~ d t -  fo ~ s i n  dt + 

R 
+ f ~3 (t, s) dt ~ Jo (pr) pdp = 

0 0 sinh ( h ~ f ( p 2 + S ) )  ~tr(p2+S)  

=/ ( r , s ) ,  0 < r < R ,  R e s > 0 .  (3.6) 

Equation (3.6) is obtained by means of discontinuous integrals (1.14) and (1.16). Using the mathematical  

method that was applied by us to problem No. 1, we reduce Eq. (3.6) to an integral equation with the L-parameter :  

1 R 
~ 3 ( r , s ) - - ~  f ~3(/9, s) K3 (r, p, h, s) dp = F 1  ( r , s ) ,  0 <  r <  R ,  R e s > 0 ,  (3.7) 

0 
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where the kernel of (3.7) has the form 

sin (p - r) 4 s /a  sin (t 9 + r) ~/ S/a 
K'3 (r, p, h, s) = + 

p - r  p + r  

- h sinh (x) cos x + cos dx ,  
h f  s / a  

(3.8) 

The  known function F l ( r ,  s) ~ (0, R),  z = 0 is determined by formula (1.25). 

The  substi tut ion of the value of ~3(t, s) from Eq. (3.7) into Eq. (3.5) gives 

( p , s ) =  f cos t _ _  + dt • 

p2 + tanh h 2 + 

• F1 (t, s) + ~ f ~3 (P, s) K'3 (t, p, h, s) dp . (3.9) 
0 

Using Eq. (3.9) in solution (3.2) and applying the inversion formula of the Laplace integral, we obtain the value 

of the tempera ture  field O(r, z, r) at any point of an infinite plate with implementat ion of mixed BC (1.1) and  (1.2) 

on the surface z -- 0 of the plate and unmixed BC of the type (3.1) on the other  surface z = h: 

1 o+ioo 
0 ( r , z , ~ )  = T ( r , z , r ) -  T 0 = ~  f e x p ( ~ ) d s  x 

o- /oo  

• • f Jo (pr) pdp 

x f c o s  t p2 + dt F l ( t , s ) + ' ~  f g3(P ,s )  K a ( t , p , h , ' s ) d p  , 
0 0 

0 < _ r < ~ ,  r > 0 ,  O<_z<_h, o > R e s > 0 ,  o = c o n s t ,  (3.10) 

where ~3(r, s) is de te rmined  from the solution of integral equation (3.7) with the L-parameter .  When h --- oo, the 

value of ~3(r, s) = ~ l ( r ,  s) (see problem No. 1), and correspondingly the solution of Eq. (1) for a half-space 

coincides with formula (1.29). 

In the s t a t iona ry  state  (r--, oo), s--, 0, we obtain the wel l -known s t a t iona ry  solut ions [8-10]  for  a 

semiinfinite body with the corresponding mixed BC at z = 0. 

Problem No. 4. It is required to solve Eq. (1) with mixed BC (2.1) and (2.2) on the surface z = 0 of a plate 

and unmixed BC of the type (3.1) on the other  surface z = h of the plate. 

T h e  initial condi t ion  coincides with problems Nos. 1-3. Th e  solut ion of Eq. (1) unde r  BC (3.1) is 

de termined by formula (3.2). 

Using for Eq. (3.2) mixed BC (2.1) and (2.2) at z = 0, upon applying the L- t ransformat ion to them, we 

obtain the following paired integral equations with the L-parameter  for finding the unknown funct ion- t ransform 

B(p, s): 
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-B (p, s) p2 + tanh h p2 + Jo (Pr) dp = , O < r < R , R e s > 0 ;  
0 

(4.1) 

7 -B(p,s)  J O ( P r ) d p = O  , R < r <  oo, R e s > 0 .  
0 

(4.2) 

To solve these equations, we carry out the substitution 

P ~ ~4(t,s) sin ( t d ( p 2 + s ) )  at, (4.3) 

which ensures satisfaction of the homogeneity of Eq. (4.2). When h --, 0% tanh(h~/p2 + s / a )  --, 1 and we come to 

the corresponding paired integral equations with the L-parameter  for investigating the temperature fields in a 

half-space [1 ] with prescribed BC (2.1) and (2.2) at z = 0. Substitution of B(p, s) from Eq. (4.3) into Eq. (4.1), 

performed as in problem No. 2, gives an integral equation with the L-parameter  for determination of the unknown 

function-transform ~4(r, s): 

t-~ 4 (t, S) ( d (S) ) R (t, S) ( d  (S) ) 
0 ~ e x p  - ~ a t - f o  v~TZ-7  2 - @ 4  sin ~ d t +  

+ f ~4 (/' S) sin t d t  -- r f ~4 (/, S) dt  x 
0 o 

1 .~ (4.4) =~- ~(u , s ) /~d / . t ,  0 < r < R ,  R e s > 0 .  
0 

Expression (4.4) is the basic integral equation with the L-parameter  for finding the unknown funct ion-transform 

~4(r, s). Using the above-described mathematical methods, this expression can be reduced to a simpler form that 

is similar to the Fredholm form, but with the L-parameter: 

1 R ~4 (r, S) -- ~ f ~4 (/9, S) ~"4 (r, p, h, s) dp = FX (r, s ) ,  0 < r < R ,  Re s > 0 ,  
0 

(4.5) 

where the known function-transform Fz(r, s) is determined in (0, R),  z = 0, T > 0, Re s > 0 by formula (2.11). 

The kernel K4(r, p, h, s) is given by the expression 

K4 (r,p, h, s) = sin (/9 - r)  ~/ s / a  _ sin (t9 + r)  X / s / a  + 
p - r  p + r  

+ h cosh (x) cos x - cos d x ,  
h~f s/a 

(4.6) 
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Having determined the value of ~4(r, s) from Eq. (4.5) and substituting ~4(t, s) into formula (4.3), we 
find the unknown function-transform: 

{ 1R } 
X F2 (/' s) at- ~ f ~4 (/9, s)~ '4 ( l , p ,  h, s) d/9 . 

0 
(4.7) 

Use of Eq. (4.7) in solution (3.2) and application of the inversion formula of the Laplace integral  allow us 

to determine the sought tempera ture  field at any point 0 < r < oo, 0 _.< z < h, r ___ 0 of an infinite plate with mixed 

BC (2.1) and (2.2) on the plate surface z = 0 and unmixed BC (3.1) on the other  plate surface z = h: 

1 a+ioo 
O ( r , z , r )  = T ( r , z , r ) - -  T 0 = ~  f e x p ( ~ ) d s  x 

o-too 

cosh 

o 
cosh 

x f sin t p2 + dt (t, s) + ~ f ~4 (t 9, s) K4 (t, p,  h,, s) dp , 
0 0 

O _ < r _ < o o ,  T > O ,  O < _ z < _ h ,  a > R e s > O ,  c r = c o n s t ,  (4.8) 

s) should be determined from the solution of integral equation (4.5) and the value of the funct ion-transform ~4(r, 

with the L-parameter .  

When h -~ 0% from Eq. (4.8) we have solution (2.17) for a half-space under  mixed BC (2.1) and  (2.2) at 

z -- 0, for ~4(r,  s) - ~z(r ,  s), and K4(r, p,  h, s) for h ~ oo coincides with the value of kernel (2.16) K2(r, p,  s). 

T h e  cons ide red  problems of mathemat ica l  physics with mixed BC are  sui table  for  various practical  
applications: 

a) in designing optimum cooling systems in radioelectronic equipment;  

b) in space technology (under  conditions of local heating or cooling); 

c) in laser medicine for improving the operating safety of laser installations; 

d) for control of the laser technology in the production of LIC; 

e) in the development of new methods and devices of nondestruct ive monitoring for identification all the 

thermophysical  characteristics of materials by temperature  measurements  in time and space directly on a bounda ry  

surface of the body under  investigation; 

f) for solving inverse problems of mathematical  physics on the basis of investigation of the direct problem 
with the aim of optimum regularization. 

In the present  work for the first time application of the method of paired nons ta t ionary  integral equations 

is implemented for the indicated class of problems of mathematical  physics by reducing them to integral equations 

with an L-parameter .  A stat ionary variant of solving the Laplace equation follows from the presented solutions as 

a particular case with s --- 0 (r ~ oo) [4, 7-9 ]. 

The  method suggested can also be used to solve the Helmholtz equation [9, 1 ] under  the considered mixed 

BC in the case of real k = Re v'-~-~, or to solve the K l e i n - G o r d o n  equation for pure imaginary k = iw = lm v ~ / a ,  

since the analytical result of their solution leads to identical integral equations (1.29) and (2.17). 
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In conclusion we note that practical application of the presented solutions for the mixed problems of 

mathematical physics with the mixed BC considered requires, as the final result, determination of the unknown 

functions-transforms -~i(r, s) in the complex plane with the prescribed accuracy from integral equations (1.23), 

(2.9), (3.7), and (4.5). But up to now the theory of solving the latter has not been developed. However, some ideas 

to solve these integral equations with an L-parameter have appeared. 

First, they can be solved by representing the analytical function ~i(r, s) in the form of the corresponding 

functional power series expanded in half-integer powers of the parameter s [ 1, 5-7 ]. Here the prescribed functions- 

transforms [(r, s) -- L[f(r, ~) ] and ~(r, s) = L[q(r, r ] in the circle r = R on the surface z = 0 should be expanded 

in the corresponding power series in s, the expansion coefficients of which will be known. Equating the left and 

right terms of these expansions in Eqs. (1.23), (2.9), (3.7), and (4.5), for identical powers of the parameter s we 

obtain a system (infinite or finite) of corresponding integral equations with degenerate kernels, which can be solved 

by well-known methods [12 ]. 

Second, our preliminary investigations of the nonstationary kernels Ki(r, [9, h, s) present in Eqs. (1.23), 

(2.9), (3.7), and (4.5) have shown that they are bounded and square integrable within the intervals 0 < r < R, 

0 < p < R for Re s > 0, and consequently, in order to solve integral equations (1.23), (2.9), (3.7), and (4.5), one 

can apply a method of successive approximations [12 ] developed for a Fredholm equation of the second kind for 

real variables. 

And finally, due attention should be given to approximate computer methods for solving the obtained 

integral equations with an L-parameter by constructing effective computational algorithms. 

R E F E R E N C E S  

1. N.A. Abdel'razak, Methods of Solving Two-Dimensional Nonstationary Heat Conduction Problems with Mixed 

and Unmixed Discontinuous Boundary Conditions, Author's Abstract of Candidate's Dissertation in the 

Physical-Mathematical Sciences, Minsk (1996). 

2. A.P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: Elementary Functions [in Russian ], 

Moscow (1981). 
3. A.P.  Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: Special Functions [in Russian ], 

Moscow (1983). 
4. G.N.  Watson, Theory of Bessel Functions, Pt. 1 [Russian translation ], Moscow i1949). 

t . 

5. G. Bateman and A. Erdelyz, Tables of Integral Transformations, Vol. I. Fourier-  Laplace-Mellin Transforms 

[Russian translation ], Moscow (1969). 

6. A.V. Luikov, Theory of Heat Conduction [in Russian ], Moscow (1967). 

7. V.P. Kozlov, Two-Dimensional Axisymmetric Nonstationary Heat-Conduction Problems [in Russian l, Minsk 

(1986). 

8. Ya. S. Uflyand, Method of Paired Equations in Problems of Mathematical Physics [in Russian ], Leningrad 

(1977). 

9. N.A. Virchenko, Paired (Triplet) Integral Equations [in Russian l, Kiev (1989). 
10. I. Sneddon, Mixed Boundary-Value Problems in Potential Theory, Amsterdam (1966). 

11. Yu. V. Gandel ' ,  Reduction of a Class of Paired Integral Equations to a Fredholm Equation of the Second Kind, 

in: Problems of Mathematical Physics and Functional Analysis, Kiev (1976). 
12. P.P.  Zabreiko, Integral Equations [in Russian], Moscow (1968). 

549 


