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ROBUSTNESS OF STATISTICAL FORECASTING BY
AUTOREGRESSION MODEL UNDER DISTORTIONS

The paper deals with avtoregressive mnde] AfRp) under two tvees of distortions: 1)
parameter specification ervors: 2} unknown mitial values Xy € HP. By the method
of asymptotic expansion we construct now estimates of robusiness characteristics
(mean-square risk, guarantosd upper risk, S-udmissible distortion level) for the tra-
ditional forecasting procedures and alko a new statistical estimator of initial values
Ag. The results are illustraled by computer modaelling.

1. INTROBDUCTION

Let a time series 7o, ¢ € N defined on the probability space (3, F, P) is observed for 7'
time moments: £ = 1.2,....T and is forecasted for the time moment ¢ = T+ 7 (7 = 1).
The hypothetical model of the time series used for caleulation of the forecast F. . is the
autoregressipn model AR(p):

fl} X = f.l'n';r;. | 'I'Eg,.
where Xy = (z¢q,...,%-p)" € RP, 6" € R? is a vector of cocflicients, {£ : ¢t € N}

are i.i.d. random variables, E{&} = 0, D{£&} = o7, initial values xg,x_,,...,1,_, are
known. The traditional autoregressive furecasting procedure has the form [1):

(2) | Tre; =0Xpy.0, =TT,
where JE'TH_I = (Fr4j-to- o dTa5-q) € RY, X1 = (zq..... Tr_g+1) €E R 0 N9 s

a vector of coefficients used in forecasting. 7 is the forecasting horizon.

In many applied problems of time series foreeasting is used hypothetical antoregrossion
model [1], [6]. In practice, however, the hvpothetical model is often distorted. For
example, parameters g and @ in (2) may differ from real values p and 8%, e there are
parameter specification errors.  This type ol distortions are investigated in [2),[3].[4]
and others. These papers are concentrated on the problem of parameter 8 estimation
under distortions, but the problem of robusiness of forecasting under distortions are not
discussed there. The next section is devoted to investigations of robustness of forecasting
in case of parametric specification crrors (6 # 0%, p # q. see [7] for details). Uncertainty
in initial values Xp also generates some distortions in the hypothetical model (1), This
type of distortions will be discussed in the sections 3, 4.
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2. PARAMETER SPECIFICATION ERRORS

The case of deterministic specification errors. At first consider influence of deter-
ministic error # — # on forecasting risk in the case of known AR order: q = p. Introduce
p-vector Ly and some (p x p)-matrices (K € N):

"f.-l 'HI? Ty ﬂ:.:_'l '&1.: El v aa !?_I ﬂp
it 1 ... 0 [ | 0 0
U=|-.1|. Bo=|" R .
0 ... 1 i 0 ... 1 0

EE} k=1
D = ding(a®,0,....0}, Sk=>_ ByD(BY). Ci = S+ ByXu(B5Xe)',

t=ir

RE.0:7) = (B, (6°.0:7)) = S, + (B™ - B)Cr{B™ — BfY., i,3=TLp

We uge the mean-syuare risk of prediction for horizon = (0, 8, 7Y = E{{#y4r —Lrer )}
as a characteristic of forecasting perforinance,

Theorem 1. [f the forecasting procedure {2) is used. then (8%, 8, 7) = Ry (67,0, 7).
This result follows from the expressions Xy == Do X = Uy, X, BX .

Corollary 1. Mintmal w.r.t. # risk is obtained at § = 8%: v, (0" 7) = Ry (8°.6% 7).

r—1 r=I !
Corollary 2. Leta =6--6° and 5(7) = (E{ﬂ:,h.ﬂ.; ' f)c-*r(z na;.:..a.:"":) .
Bl _|=U
Then the fﬂ“ﬂﬂ'iﬂ.ﬂ' asympiotic r.I;rmﬂn'uu w, o s ralid:

¥
(4) (0,0, 7) = rmin(68":7) + Y Gulriay + Olal®).

kd=1

Let us represent 2 = By + A, where A" = (a1 Oy ¢ -+ 1 0,) and O, is p-vector of zeros.
Then by the Theorem 1 we come to the result.

Let us denote the guaranteed upper risk: r, (8% 715} = SUP| o <o {0, &Y + &v; 7), where
e >0 is the known admissible level of the specification error o). Let us sav that error a
satisfies the condition of d-admissibility {for any & = 0) if ro {67, 7;2) < (14 8)rminlf; 7).

Theorem 2. Under Theorem I conditions for any fired § > 0 and entical level = — 0
1) ra{@®7:6) = ronin(0% 7) + 2 Xpnar + O3
2} the sct of d-admissible errors o is the ellipsoid: EL] M = A man (8% 7),
where {A; = 0, i = L. p} are the cigenvalues of the matrir 3(7). Mo i5 the marimal
eigenvalue; p = To. T s the orthogonal matrix such that 3(7) = T'diag{Ai. ..., Ap}T.

This result is a consequence of using expansion (4) without remainder O(la|*) and indi-
cated form of symmetrical non-negatively defined matrix 3(7).

Corollary 3. The crror av is d-admissible if ja| < L-fﬁr'.,.;,, (09 7}/ Amaz (3(T)).

Unconditional risk of forecasting. Now let us consider the situation where the vec-
tor 8 is a random vector distributed near @ and let us investigate the unconditional
forecasting risk: r(0%;7) = E{r(#°,8; 7)}. wherc E{-} is the expectation symbol.
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Theorem 3. Let the parametric error o is a random vector with covariance matrz L

and restricted thod order moments sneh that £, = AX E{|nio|} -+ 0. Then the
g

unconditiona! forceasting risk satisfies the following asymptotoe expansion:

r‘l_ﬁ";T} = Fanin ﬁlﬂ“: ! M'l-fl'.'-":l'.'_.l_l i M=y ).

For fixed @, 6° and t risk is a bounded polvnomial wat. {#, i = T.p}. That is why
all its derivatives are bounded in a closed region. Using the Tavlor approximation and
boundedness of derivatives we prove this Theorem

The case of misspecification of AR order. Lot us investigate the influence of the
error (g # p) in assignment of AR order on the risk of lorecasting, Lot us evaluate the
case g < p (the case of p > g is investigated in the same wav). Tn this case last p— g

elements of the first row of the matrix B are zeros. Make the partition: 67 = (69, :80,,),

0" = {0, i27)+ where the first blocks of these pevectaors are g=vectors and 8y = Op_y;

Blt) = (;i‘"’ ﬁ””) , where iy is the {y ~ glmatrix.

J?ﬂr]?: -'-"|1:Ii'l

Theorem 4. Let the observed time series {x,} 15 deserded by the AR{p)-model and in
the forecasting procedure (2} we use the AR(g)-model fq < p) where the first q coefficients
ure exactly estimated (8 = E?:'["'”,J. Then the rsk satisfies the expansion:

r{8°,0:7) = e (0% 7) + 00y a0, + O|a]*).

This expansion follows from (4}
Corollary 4. The AR order error is §-admissuble if i'"l].;rir_-z}ﬂ:-'.',j < OFynin (72 T).

All results of this section were verified by compater modelling [70.

3. THE CASE OF UNKNOWN INITIAL VALUE XXy

For estimating of unknown antoregressive cocfficients the least squares method is often

used [1]: 0 = arg m&u Fi(8, Xg). where  F{# X)) = E:f_,{;r'. ~ @' Xy-1)* is the error

function. The explicit form of this cstimator for the hvpothetical medel (17 is

T i+
(5) G=A""a, A=Y XX . u Y @ X
P=l f=|

It is seen from (5) that the matrix A and the vecror ¢ are dependent on the vector of
mitial values Xy = (xg, oo, op)’s e we lave a lunetion 0 — E‘j{"!i.'u]. In theoretical
analysis Xy is usually assumed to be known bt in practice this assumption is not valid.
So for estimating of antoregressive coefficients we necd to estimate initial values Xg. It
is a significant problem for small samples.

The most popular practical methods of estimating Xy are [1-]7 0 1} to rename indexes
To—g = Tp, | = 1.7 2} to assign Xg o= (0, .00 & NP 3) 1o assign Xg as mean value
Ap u= E{Xo}; 4) “back forecasting”. Using of these methods in practice has empirical
base only. Note that the most popular method is the first one, hut it is not good for a
small sample because of reducing of its size fromn T to T - p
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Least squares estimate of initial values. Let us apply the least squares method for
estimation of the vector Xy in the following way:

(6) Xo = arg i Fi#, Xy).

Now find the explicit form of the LSE (6). At first, determine the functional depen-
dence of the vector a, the matrix A on the vector Xa. For this purpose define shilt
(p x pl-matrix S left lower {p — k) x (p — k}-block of which is the unit matrix and other

blocks are zeros: 55 = ( Guntpety - e ) k=0,p (S = I. §, = Op). Denote:

fip . kpwipmty SNp dpes

L= Zrmsp 6 = GiXo) = S SXKaXLS + S X XoS] + S0 X150,

Fe=1)

{ﬂ =1 p—1 T--1
h = LJII+I5:—["‘H‘-H + E .t; B j.‘{r. H Z ‘;;'l J-JI. Tl-’ q:. -f + L .‘l: ..1':;-
=0 Fr=p el r.oop

Using (7) and evident representation X, = 5, X, + 5 Xo we get the following result.
Lemma 1. The vector a and the matrir A in {5} wea~=LXg+h A= GlAy) 4+ K.

Let i - ||, is some matrix norm. ]I e is some vector norm, and w0 = s
S-a]:namt:: “linear” ({y) and - squuru * (e} parts of the matrix G G = Ga + G, G =
L SXoX4S Gy = S0 (S} X XSi + SiXoX]S,-0).

Lemma 2. The error function F [E. Xu) satisfies the crpansion:
(8) F(6, Xo) = f2(Xo, X3) = filXo) = fa + Ofw),
FalXa. X)) = WK VG K~ Mh + 2R'K 'GiyK'LXa - .TELL"H'-'LIU-

r .
KW KTGIK T filXe) = 2Ry - WKT'G K™%, fo= Z;;’- — K Vh

Using Lemma 1 we have 4~ = (K +G) ™ = (I, =GR~ ')K)™' = K-WI+GR )L
By applying Taylor approximation of (J + GK~1)™" we get the expansion: A1 =

K-WI-GK'+GK'GK™* +ol|K- Y21, = K 1- K 'GK e B
where 1, = (p x p)-matrix of ones, Its suhsnl:ul:mn into the expression of the function
F{f. Xg) proves the final resunles,

Theorem 5. The LSE (6) of initial values Xy satisfics the expansion:

(9] Xp = Z7Vz 4 Olw)l,,
p=1
2= (SIK WK IS+ KRS, XpSIK T Lk LK S XSy KM +

.
1l
=

+SIK T XS KL+ I.’H'IS;,_,.IPh'h" ’5,) ~L'RUL,
s LK™ h - Zh K~'S,  X,SiK™'h.

The LSE must satisfy two conditions: <7 F(#,Xp) = 0 and ‘;-"' .F{J'? Xa) = 0. Differ-

entiating of F{#, Xo) in the form (8) leads to the result (9).
Let us investigate some information properties of estimation of Xy. The cstimate Xo
is constructed using the information from the sample {x;}. ¢ = 1.7. Let us find the
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Shannon information contained in the vector X, about the vector Xo: J{Xo, X} =
E {In fﬁ%} Let us denote the covariance £ = Cov {Xp, Xo} and Ex, x, is the
covariance matrix of the composite vector (X4 @ X|)' € R*.

Lemma 3. For the model (1) Cov{Xg, X} = Cov { Xy, Xo} BY .

Theorem 6. Let an AR(p) time series (1) is a Gaussian stationary time series. Then
the Shannon information about Xy contained in X, is

1{Xo, X} = In\/[S|/|E ~ BSSBY|

The cquation |Ex,. x| = |Z||E = Effmx;E']Ex,,,x,I and Lemma 3 prove the result,

Corvollary 5. [f (1) is a stable autoregression model, then I {Xq, X¢} — 0 at t — 0.

Let Amax is the greatest in absolute eigenvalue of matrix Bg. Then according to [1] for
every A > |Amaz| there exists a constant ¢ such that all elements of the matrix By are
less than eA'. t = 0,1..... This result together with Theorem 6 and property of stable
autoregression: [Angz] < 1 gives the result,

Note, that Corollary 5 shows the impossibility of existence some consistent estimator
of vector Xp using unique sample {x,}, t = 1.7T.

1. GENFRALIZATION OF THE MODEL FOR THE CASE OF M SAMPLES

Let M independed samples of autoregressive processes {:I:E""']1 t=1,Tm, m=1»M}
of type (1) with the same initial vector Xg are observed, i.e.

7 = g x ) e xim X, t=1Tm, m=1M,
where m is the sample index; every sample satisfies (1); the errors are uncorrelated:

E {E}E}Ef:” = a*8y:8,;. We have 2p 4- 1 unknown parameters: " X, e RP, o2

Lot add index ™ to all results of previous section for indicating theirs membership
to the m-th sample. For estimation of unknown parameters we use the least squares
technique:

- _ . o — 3 2 _ _Ful(8. Xo)
(10) ¢ = arg “]@m F, (0. Xa), Xo = arg IIE}H Fa (6, Xo), E::nl Tm -1

where F, (f. Xg) = ::.,, Fimi{g, Xy) is the total error function.

Explicit forms of these estimators are constructed in the same way as for the unique
sample case.

Theorem 7. The LSE (10} of initial values 8°, Xy are:
(11) 0=A a,, Xo=2Z.'z, +0(w,)lp

Al Al M M
where A,, = 3, I"'itm}' By = m=lﬂ{m}' Ly = Eﬂ:] ztm, e = E—nt:n:lzl'm':r

w,, =M wlm) and Al g, Z0m) 2 t™) are defined in (5} and Theorem 5.

This result follows from the properties of the error function F,, (8, Xp).
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Ficure 2. Plots of dependence of A on M with 95%-confidence limits

5. NUMERICAL RESULTS

The results of Theorems 5. 7 woere verified by Monte-Carlo modelling. We generated
N random samples by the model (1) with unique vector Xy and estimated Xo using
(9) and (11). After that we calculated deviation &, = [|X\7 — Xy, where X' is
the estimate of Xy in i-th experiment (i = 1, N) and averaged them: A = 4 VAL
In simulations we used AR(2)-model with 8 = (1.14, —0.32):. Xy = (6.69,4.14); \; =
0.64, Az = 0.50; ¢ = 63.7. Figure 1 illustrates inconsistency of LSE (6) using the only
sample. Figure 2 demonstrates result of using M samples in estiwating (size of cach
sample Ty, = 20, m = 1, M}: it illustrates the consistency proporty.
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