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A THEOREM OF UNSTABILITY* 
Исследуется проблема неустойчивости состояний равновесия автономных дифференциальных систем и автономных 

дискретных систем. Приведено обобщение теоремы Н.Н. Красовского со знакопостоянной производной функции Ляпунова 
по времени в случае, когда множество, где эта производная обращается в нуль, может содержать положительные полутраек-
тории. Доказана соответствующая теорема обращения для линейных систем дифференциальных уравнений.  

1. Introduction. The well known theorem of the direct method of A.M. Lyapunov [1] gives a criterion 
for the instability of the equilibrium of a differential system  

( ),x f x=�                                                                             (1) 
where f is a mapping defined on an open set G⊂ℜn with 0∈G and f(0)=0. This criterion is based on the exis-
tence of a positive definite function V defined on G such that its derivative V�  along the trajectories of system 
(1) is positive definite. A generalization of this result was obtained by H.G. Tchetaev [2] and N.N. Kras-
sovskii [3] and others. As far as we are concerned with the result in [3], the hypothesis are weakened in the 
following way: the derivative of V is only assumed to be positive but it is also assumed that the set E={x∈G: 

( ) 0V x =� } does not contain positive trajectories except for the origin.  
The purpose of this paper is to give a generalization of this result of Krassovskii [3] about the instability 

of differential systems for continuous time systems as well as for discrete time ones.  
A point x0 being given, we denote by x(t, x0) the solution of (1) issued from x0; we denote also by γ+(x0) 

(resp. γ−(x0)) the positive (resp. the negative) semi-trajectory issued from x0: γ+(x0)={x(t, x0): t≥0}. Also we 
denote by B(x0, r) the ball of center x0 and radius r.  

2. Main results. First, we give our generalized version of the above-mentioned result of Krassovskii.  
Theorem 1. Consider the differential equation ( )x f x=�  defined in a neighborhood U of the origin in ℜn; 

we assume that f is lipschitzian and satisfies f(0)=0. Moreover, we assume that there exists a function V of 
class C1 defined in U\{0} such that:  

i) V(0)=0;  
ii) for every α>0, there exists p∈B(0, α) such that V(p)>0;  
iii) for every x∈U, ( ) 0;V x ≥�  
iv) for every x0∈U, γ+(x0)⊄E={x∈U: ( ) 0V x =�  and V(x)≠0}.  
Then x=0 is an unstable equilibrium point for ( )x f x=� .  
Note first that the conditions of application of this theorem are identical to the ones of Krassovskii [3] ex-

cept for what concerns the fourth point where our set E is larger than the one appearing in the result of Kras-
sovskii.  

Proof. Take ε0>0 such that B(0, ε0)⊂U, let 0<α<ε0 and take x0∈B(0, α) such that V(x0)>0. Assume that 
x(t, x0) remains in B(0, ε0) for all t≥0, then the ω-limit set of x0 is nonempty; denoting this set by L+(x0), we 
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can say that V is constant and 0V ≡�  on L+(x0). To be more precise, since V(x(t, x0))≥V(x0)>0 this constant is 
positive. Hence we can say that L+(x0)⊂E; now, if we take a point y∈L+(x0), we have γ+(y)⊂L+(x0)⊂E which 
is a contradiction.  

Remark that, since an ω-limit set contains all the semi-trajectories issued from one of its points, point iv) 
of the theorem could be replaced by  

iv') for every x0∈U, γ−(x0)⊄E={x∈U: ( ) 0V x =�  and V(x)≠0}.  
We state now a theorem of instability concerned with the discrete time systems.  
Let U be an open neighborhood of the origin in ℜn and f: U→ℜn a continuous function such that f(0)=0. 

We consider the discrete time system  
xk+1=f(xk),                                                                            (2) 

where xk∈U and k∈N. We denote by x(k, x0) (k=0, 1, 2, …) the solution of system (2) with initial condition 
x0, so, we have x(0, x0)=x0 and x(k+1, x0)=f(x(k, x0)). It is well known [11] that if the solution x(x0, k) is 
bounded on N, its ω-limit set is nonempty, compact and invariant. In the definition below, we introduce the 
notion of stability for discrete time systems.  

Definition. The fixed point x0=0 is said to be stable if  
(∀ε>0)(∃δ>0)(∀x0∈B(0, δ))(∀k∈N): ||x(k, x0)||<ε; 

it is said unstable if it is not stable.  
Concerning discrete time systems, the second method of Lyapunov was used for the first time in [6, 7]; 

subsequent developments can be found in [9−11]. In particular, in [8], the author states a result, analogous to 
the theorem of Barbachin − Krassovskii on the global asymptotic stability, for the solutions of a discrete time 
system by using a Lyapunov function which is non increasing along the solutions of the system. In [9−11], 
the authors use the method of positive semi-definite Lyapunov functions for discrete time systems. In these 
works, the authors study the qualitative theory of the stability of the solutions and the related trajectories. In 
particular, they introduce the notion of invariant sets and they show that if a solution of system (2) is 
bounded, its ω-limit set is nonempty, compact and invariant. They also show that, if there exists a trajectory 
included in a compact set K⊂U and a function V: K→ℜ+ whose is non increasing along this trajectory, then 
all the limit points of this trajectory are located an the same level surface of function V. Using these results, 
we can show the following result, analogous to Theorem 1.  

Theorem 2. Assume that there exist a neighborhood U of the origin and a continuous function V: U→ℜ, 
such that  the following conditions are satisfied:  

i) V(0)=0;  
ii) given α>0 there exists p∈B(0, α), such that V(p)>0;  
iii) V(x(k+1, x0))≥V(x(k, x0))≥0 for every solution x(k, x0)∈U and for every k=1, 2, …;  
iv') for every x0∈U, we have γ+(x0)⊄E={x∈U: V(x)=V(f(x)) and V(x)≠0}.  
Then 0 is an unstable equilibrium point of system (2).  
Proof. The proof is analogous to the one of Theorem 1. Take ε0>0 such that B(0, ε0)⊂U, let 0<α<ε0 and 

take x0∈B(0, α) such that V(x0)>0. Assume that x(k, x0) remains in B(0, ε0) for every k=1, 2, 3, …, then, 
L+(x0), the ω-limit set of x0 is nonempty.  

Take x*∈L+(x0), x* is the limit of a subsequence of the sequence (x(k, x0))k≥0: x*= 0lim ( )ii
x k x

→∞
 where (ki) is a 

increasing sequence of integers tending to infinity. Function V being nondecreasing along the solutions of 
(2), we have V(f(x*))≥V(x*) and V(x*)≥V(x(ki, x0)) for every index i (notice that this inequality implies that 
V(x*)≥V(x0)>0). Due to the continuity of f, we have  

*
0( ) lim ( 1, ).ii

f x x k x
→∞

= +                                                                      (3) 

Now for every index i, there exists an index j such that kj≥ki+1 and so  
*

0 0( ( 1, ) ( ( , )) ( ).i iV x k x V x k x V x+ ≤ ≤                                                       (4) 
Function V being continuous, from (3) we deduce that  

*
0( ( )) lim ( ( 1, )).ii

V f x V x k x
→∞

= +  

This equality combined with inequality (4) gives  
* *( ( )) ( ).V f x V x≤  
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So we can conclude that V is positive on L+(x0) and that V=V ° f on this set, which means that L+(x0)⊂E. 
But if we take x*∈L+(x0), we have γ+(x*)⊂L+(x0)⊂E which is a contradiction which allows us to conclude that 
there exists indices k such that x(k, x0)∉B(0, ε0).  

3. Converse of the instability result in the linear case. The converse of the theorem of Krassovskii can 
be found in [5, 12], we consider here the case of a linear equation  

 
x Ax=�                                                                             (5) 

and we state the following theorem.  
Theorem 3. If the origin is an unstable equilibrium in equation (5), there exists a quadratic form x → Q(x) 

which satisfies all the assumption of Theorem 1. 
Proof. If the equilibrium of system (5) is unstable then  
1) one of the eigenvalues of A has a positive real part;  
2) or there exists a nonzero nilpotent block in the Jordan decomposition of A;  
3) or A has an eigenvalue λ which is a pure imaginary number and whose algebraic multiplicity is not 

equal to its geometric multiplicity.  
In the first case, assume that λ is an eigenvalue of A with positive real part; notice that λ is also an eigen-

value of A′  the transposed matrix of A. If λ∈ℜ, let v be an eigenvector of A' related to λ and consider the 
quadratic form defined by Q(x)=(x'v)2. We have  

2( ) 2( )(( ) ) 2( )( ( )) 2 ( )Q x x v Ax v x v x A v x v′ ′ ′ ′ ′ ′= = = λ�  
so Q�  is obviously nonnegative and the set E defined in Theorem 1 is empty.  

If λ∉ℜ, we can write λ=a+ib with a>0. There exist  two nonzero vectors v1 and v2 such that  
1 1 2 ,A v av bv′ = +  2 1 2A v av bv′ = −  

we define Q by Q(x)= 2 2
1 2( ) ( )x v x v′ ′+  and we have  

2 2
1 1 2 2 1 2( ) 2( )(( ) ) 2( )(( ) ) 2 (( ) ( ) ).Q x x v Ax v x v Ax v a x v x v′ ′ ′ ′ ′ ′= + = +�  

So, we can see that Q�  is nonnegative and that the set E is empty.  
In the second case, we can find nonzero vectors v1 and v2 such that  

1 0,A v′ =  2 1,A v v′ =  
we define Q by Q(x)=(x'v1)(x'v2) and we have  

2
1 2 1 2 1( ) (( ) )( ) ( )(( ) ) ( )Q x Ax v x v x v Ax v x v′ ′ ′ ′ ′= + =�  

and so Q�  is nonnegative and the set E is empty. In the last case, let λ=ia with a≠0; there exist nonzero vec-
tors v1,…,v4 such that  

1 2 ,A v av′ =  2 1,A v av′ = −  3 1 4 ,A v v av′ = +  4 2 3 ,A v v av′ = −  
we define Q by Q(x)=(x'v1)(x'v3)+(x'v2)(x'v4) and we have  

2 2
1 3 1 3 2 4 2 4 1 2( ) (( ) )( ) ( )(( ) ) (( ) )( ) ( )(( ) ) ( ) ( )Q x Ax v x v x v Ax v Ax v x v x v Ax v x v x v′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + = +� and so Q�  is non-

negative and E is empty.  
4. Examples.  
1.1. Continuous system. Consider the Liénard's equation  

4 2 2 3( 2 ) 0,px x x x x+ − − =�� � �                                                            (6) 
where p∈N* and it is assumed that a(0)=b(0)=0. Together with this equation, we consider the function V de-
fined by  

2 41 1( , ) ,
2 4

V x x x x= − +� �  

we have  
2 4 2 2( , ) ( 2 ) pV x x x x x= −� � � �  

so V�  is nonnegative and  
4 2{( , ) : ( , ) 0} {( , ) : 0} {( , ) : 2 0}.E x x V x x x x x x x x x= = = = ∪ − =�� � � � � �  

Let ( ( ) ( ))x t x t�  be a solution of (6) included in E, then we have 3 ,x x=��  from which we deduce  
4 2 3 3( 2 ) 4 4 4 4 0d x x xx xx xx xx

dt
− = − = − =� � ��� ��� �  
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so the expression 4 2( ) 2 ( )x t x t− �  is constant, if this constant is nonzero, the inclusion ( ( ) ( ))x t x t� ∈E for all t≥0 
implies that ( ) 0x t =�  for all t, which implies that 3( ) ( ) 0x t x t= =��  for all t, so (x(t), y(t)) is the null solution of 
(6). If this constant is zero, we have 4 2( ) 2 ( ) 0x t x t− =�  for all t, then ( ( ) ( )) 0V x t x t =�  for all t. In conclusion, 
we proved that there does not exist solutions of (6) included in the set {( , ) : ( , ) 0}.E x x V x x∩ >�� �  Neverthe-
less, notice that (x(t), y(t)) defined by  

2( ) ,
1

x t
t

= −
+

 2

2( )
(1 )

y t
t

=
+

 

is a solution of (6) included in {( , ) : ( , ) 0}E x x V x x∩ >�� �  and so, we cannot conclude here thanks to the 
above-mentioned theorem of Krassovskii.  

4.2. Discrete time system. Consider the system given in ℜ2  
1

2 2 2
1

2 ,k k k k

k k k k

x y x y

y x x y
+

+

= + α⎧⎪
⎨

= + + α⎪⎩
                                                                (7) 

function f defining this system is given by  

2 2 2

2
( , ) .

y xy
f x y

x x y
+ α⎛ ⎞

= ⎜ ⎟+ + α⎝ ⎠
 

Moreover, if α=0, U is chosen to be equal to ℜn, while if α≠0, we take for U an open neighborhood of the 
origin which does not contain the point of coordinates (2α2(1+α), −2α(1+α)). Taking the Liapunov function 
V(x, y)=x+y, we have  

2( , ) ( ( , )) ( , ) ( ) 0.V x y V f x y V x y x y∆ = − = + α ≥  
Set E is  

{( , ) : and },E x y U x y x y= ∈ = −α ≠ −  
which is obviously empty if α=1. If α≠1, if a solution (xk, yk) of (7) remains on E, we have xk= −αyk for every 
index k=0, 1, 2, … and the sequence (yk)k≥0 satisfies the relations  

2 2
1 2 ,k k ky y y+−α = − α  2 2

1 2 ,k k ky y y+ = −α + α  
from which we deduce that  

2 2 20 (1 ) 2 (1 )k ky y= −α + α −α  
and so (xk, yk)=(0,0) or  

2

1 ,
2ky + α

=
α

 1
2kx + α

= −
α

 

for every index k=0, 1, …, but the second possibility cannot occur because of the choice of U, so set E does 
not contain any positive semi-trajectory of (7) except (0,0).  
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