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A THEOREM OF UNSTABILITY"

Hccnenyercst mpobieMa HEYCTOMIMBOCTH COCTOSHHI PaBHOBECHS aBTOHOMHBIX TH((EPEHIMAIBHBIX CHCTEM M aBTOHOMHBIX
IuckpeTHBIX cucteM. [IpuBeneHo o6o6menue Teopemsl H.H. KpacoBckoro co 3HakomnoctosHHOH npounsBoaHol (yHkuuu JlsmyHoBa
10 BpEMEHH B ciIydae, KOT[a MHOXECTBO, TJIe 3Ta IPOU3BOAHAs 00pamaeTcs B HyJlb, MOXKET COJCPKATh ITOJI0KUTEIIBHEIE IOy TPaeK-
Topuu. JlokazaHa COOTBETCTBYIOIAst TeOpeMa OOpaIeHHs JUIST JINHEHHBIX CHCTeM I depeHInaIbHBIX yPaBHEHUH.

1. Introduction. The well known theorem of the direct method of A.M. Lyapunov [1] gives a criterion

for the instability of the equilibrium of a differential system

x=f(x), (D
where f'is a mapping defined on an open set GCR” with 0e G and f{0)=0. This criterion is based on the exis-
tence of a positive definite function ¥ defined on G such that its derivative ¥ along the trajectories of system
(1) is positive definite. A generalization of this result was obtained by H.G. Tchetaev [2] and N.N. Kras-
sovskii [3] and others. As far as we are concerned with the result in [3], the hypothesis are weakened in the
following way: the derivative of ¥ is only assumed to be positive but it is also assumed that the set F={xeG:
V(x)=0} does not contain positive trajectories except for the origin.

The purpose of this paper is to give a generalization of this result of Krassovskii [3] about the instability
of differential systems for continuous time systems as well as for discrete time ones.

A point x, being given, we denote by x(¢, x,) the solution of (1) issued from x,; we denote also by 7" (xo)
(resp. Y (x0)) the positive (resp. the negative) semi-trajectory issued from xo: v'(xo)={x(¢, xo): £>0}. Also we
denote by B(xo, ) the ball of center x, and radius 7.

2. Main results. First, we give our generalized version of the above-mentioned result of Krassovskii.

Theorem 1. Consider the differential equation x = f(x) defined in a neighborhood U of the origin in R";
we assume that f is lipschitzian and satisfies f{0)=0. Moreover, we assume that there exists a function V of
class C' defined in U\{0} such that:

i) 1(0)=0;

ii) for every a>0, there exists pe B(0, o) such that V(p)>0;

iii) for every xe U, V(x) > 0;

) for every xoe U, ' (xo)zE={xcU: V(x)=0 and V(x)#0}.

Then x=0 is an unstable equilibrium point for x = f(x).

Note first that the conditions of application of this theorem are identical to the ones of Krassovskii [3] ex-
cept for what concerns the fourth point where our set £ is larger than the one appearing in the result of Kras-
sovskii.

Proof. Take >0 such that B(0, gy)cU, let 0<a<g, and take xoeB(0, o) such that V(x()>0. Assume that
x(t, xo) remains in B(0, go) for all £0, then the w-limit set of x, is nonempty; denoting this set by L"(x,), we
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can say that ¥ is constant and ¥ =0 on L"(x,). To be more precise, since V(x(, x0))>V(x0)>0 this constant is
positive. Hence we can say that L"(xo)cE; now, if we take a point yeL'(xy), we have v (y)cL (xo)E which
is a contradiction.

Remark that, since an m-limit set contains all the semi-trajectories issued from one of its points, point iv)
of the theorem could be replaced by

iv") for every xoe U, v (xo)zE={xe U: V(x)=0 and V(x)=0}.

We state now a theorem of instability concerned with the discrete time systems.

Let U be an open neighborhood of the origin in R” and f; U—>R" a continuous function such that £{0)=0.
We consider the discrete time system

X1 =fxk), (2)
where x,€ U and ke N. We denote by x(k, xo) (k=0, 1, 2, ...) the solution of system (2) with initial condition
X0, 80, we have x(0, xo)=xo and x(k+1, xo)=fx(k, x0)). It is well known [11] that if the solution x(xo, k) is
bounded on %, its ®-limit set is nonempty, compact and invariant. In the definition below, we introduce the
notion of stability for discrete time systems.

Definition. The fixed point x,=0 is said to be stable if

(Ve>0)(36>0)(VxoeB(0, 8))(VkeN): ||x(k, xo)||<e;
it is said unstable if it is not stable.

Concerning discrete time systems, the second method of Lyapunov was used for the first time in [6, 7];
subsequent developments can be found in [9-11]. In particular, in [8], the author states a result, analogous to
the theorem of Barbachin — Krassovskii on the global asymptotic stability, for the solutions of a discrete time
system by using a Lyapunov function which is non increasing along the solutions of the system. In [9-11],
the authors use the method of positive semi-definite Lyapunov functions for discrete time systems. In these
works, the authors study the qualitative theory of the stability of the solutions and the related trajectories. In
particular, they introduce the notion of invariant sets and they show that if a solution of system (2) is
bounded, its ®-limit set is nonempty, compact and invariant. They also show that, if there exists a trajectory
included in a compact set KcU and a function V: K—9R" whose is non increasing along this trajectory, then
all the limit points of this trajectory are located an the same level surface of function V. Using these results,
we can show the following result, analogous to Theorem 1.

Theorem 2. Assume that there exist a neighborhood U of the origin and a continuous function V: U—R,
such that the following conditions are satisfied.:

i) 1(0)=0;

it) given a>0 there exists peB(0, o), such that V(p)>0;

iii) V(x(k+1, x0))=2V(x(k, x0))=0 for every solution x(k, xo)e U and for every k=1, 2, ...;

iv') for every xoe U, we have ¥ (xo)zE={xe U: V(x)=V(f(x)) and V(x)#0}.

Then 0 is an unstable equilibrium point of system (2).

Proof. The proof is analogous to the one of Theorem 1. Take €,>0 such that B(0, go)cU, let 0<a<g, and
take xoeB(0, o) such that V(x)>0. Assume that x(k, xo) remains in B(0, &) for every k=1, 2, 3, ..., then,
L"(xo), the o-limit set of x is nonempty.

Take x €L"(xo), x" is the limit of a subsequence of the sequence (x(k, xo))iso: X = }i_)no}x(kl.xo) where (k;) is a

increasing sequence of integers tending to infinity. Function } being nondecreasing along the solutions of
(2), we have V(fix))2V(x") and V(x")>V(x(k;, xo)) for every index i (notice that this inequality implies that
V(x")=V(x0)>0). Due to the continuity of f; we have

SO =limx(k, +1,%,). 3)
Now for every index i, there exists an index j such that k>k;+1 and so
V(x(k, +1,x,) <V (x(k;, %) <V(x). 4)

Function V being continuous, from (3) we deduce that
V(f () =limV (x(k, +1,x,).
This equality combined with inequality (4) gives
V()<Y (X,
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So we can conclude that V is positive on L'(x) and that ¥=V - f on this set, which means that L"(x)CE.
But if we take x € L"(x,), we have y'(x )L (xo)cE which is a contradiction which allows us to conclude that
there exists indices & such that x(k, xo) 2 B(0, &).

3. Converse of the instability result in the linear case. The converse of the theorem of Krassovskii can
be found in [5, 12], we consider here the case of a linear equation

X=Ax (5)

and we state the following theorem.

Theorem 3. If the origin is an unstable equilibrium in equation (5), there exists a quadratic form x — Q(x)
which satisfies all the assumption of Theorem 1.

Proof. If the equilibrium of system (5) is unstable then

1) one of the eigenvalues of 4 has a positive real part;

2) or there exists a nonzero nilpotent block in the Jordan decomposition of 4;

3) or 4 has an eigenvalue A which is a pure imaginary number and whose algebraic multiplicity is not
equal to its geometric multiplicity.

In the first case, assume that A is an eigenvalue of 4 with positive real part; notice that A is also an eigen-
value of A4’ the transposed matrix of 4. If Le®R, let v be an eigenvector of 4’ related to A and consider the
quadratic form defined by O(x)=(x"v)’. We have

O(x) = 2(xX'V)((Ax)'v) = 2(xV)(x'(A'V)) = 2A(x'v)
so O is obviously nonnegative and the set £ defined in Theorem 1 is empty.
If Lg*R, we can write A=a+ib with a>0. There exist two nonzero vectors v; and v, such that
A'v, =av, +bv,, A'v,=av,—bv,
we define Q by O(x)=(x"v,)’ +(x'v,)* and we have

O(x) = 2 )((Ax)'vy) + 2(x'v, )(Ax)'v,) = 2a((x'v,)* + (x'7,)%).
So, we can see that O is nonnegative and that the set E is empty.
In the second case, we can find nonzero vectors v, and v, such that

Av, =0, A'v,=v,,

we define O by O(x)=(x"v|)(x'v,) and we have
O(x) = ((4x)'v ) (x'v,) + (xv )(Ax)'v,) = (xlvl)2
and so O is nonnegative and the set E is empty. In the last case, let A=ia with a#0; there exist nonzero vec-
tors vy,...,vs such that
Av =av,, Av,=-av,, A'v;=v,+av,, A'v,=v,—av,,

we define O by O(x)=(x"v)(x'v3)+(x"v2)(x'v4) and we have
O) = ((A0))(x'V) + (FW)(AXY'v) + (A0 v )(x'v,) + (7, )X(Ax)'v,) = (¥'%)* +(x'v, Y and so O is non-
negative and E is empty.

4. Examples.
1.1. Continuous system. Consider the Liénard's equation

P+ (xt =28 x-x" =0, (6)
where peN" and it is assumed that a(0)=h(0)=0. Together with this equation, we consider the function ¥ de-
fined by

: 1., 1,

V(x,x)= —Ex +Zx ,
we have

V(x,x)=x>(x*=2x%)*"
so V is nonnegative and

E={(x,X): V(x,%) =0} ={(x,%): x=0}U{(x,%): x* —2%* =0}.
Let (x(¢)x(¢)) be a solution of (6) included in E, then we have ¥ =x’, from which we deduce

di(x“ —2x%) = 4xx’ — 44Xk =4xX —4xx° =0
t
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so the expression x*(#)—2x>(¢) is constant, if this constant is nonzero, the inclusion (x(¢)x(¢)) €E for all £~0
implies that x(¢)=0 for all £, which implies that ¥(¢) = x’(¢) =0 for all £, so (x(¢), 1(¢)) is the null solution of
(6). If this constant is zero, we have x*(#)—2x%°(¢)=0 for all ¢, then ¥ (x(£)x(t)) =0 for all ¢. In conclusion,
we proved that there does not exist solutions of (6) included in the set £ N {(x,x): V(x,x)>0}. Neverthe-
less, notice that (x(¢), y(¢)) defined by

V2 2

x(t)=———, y(t)=
0= YOy
is a solution of (6) included in E M {(x,x): ¥ (x,x)>0} and so, we cannot conclude here thanks to the
above-mentioned theorem of Krassovskii.
4.2. Discrete time system. Consider the system given in R*

{xkﬂ =Yt 2a'xkyk’

P 2.2
Vit =X T X QY

(7)
function £ defining this system is given by
Sfxy)= {

Moreover, if a=0, U is chosen to be equal to R", while if a0, we take for U an open neighborhood of the
origin which does not contain the point of coordinates (20’(1+at), —20.(1+a)). Taking the Liapunov function
V(x, y)=x+y, we have

y+20xy
x+x*+a’y’ )

AV (x,p) =V (f (x, ) =V (x,) = (x +0p)” 2 0.
Set ' is
E={(x,y)eU: x=—ayand x # -y},

which is obviously empty if a=1. If a1, if a solution (x;, yx) of (7) remains on E, we have x;=—ovy; for every
index k=0, 1, 2, ... and the sequence ()i satisfies the relations

—O, = Y 2000, Y = o+ 200y,
from which we deduce that
0=(1-0a’)y, +2a*(1-a)y;
and so (x;, vx)=(0,0) or
I+ a l+a

=52 %=
20 20
for every index k=0, 1, ..., but the second possibility cannot occur because of the choice of U, so set E does
not contain any positive semi-trajectory of (7) except (0,0).
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Bopuc Cepzeesuu Kanumun — xanmunat GU3NKO-MaTeMaTHUECKUX HAyK, JOLECHT KaeIpbl METOAOB ONTHMAIBHOIO yIpaBie-
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