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One of the perspective fields of SPM development is to obtain information 

about the subsurface (deep) structure of the materials especially techniques of non-

destructive nanotomography. They are based on the fact that the mechanical interac-

tion of the tip with the sample in contact and hard tapping modes leads to a local 

deformation of the materials. Therefore, the images of topography and different 

contrasts (lateral forces, phase shift) contain information about the depth of defor-

mation, and are the sensitive to the thickness of «soft» material layer, which cover 

the «hard» clots. Changing the scan parameters we can «see» these clots, in spite of 

the fact that they are coated with softer layer. There are some investigations which 

demonstrated the possibility of subsurface structure imaging, mainly polymeric 

composites if they used a multi-pass scanning technique with the changing the tip-

surface interaction (operation parameters). Here the material of the layers is elas-

tically deformed and does not undergo irreversible changes during the scanning 

process. Additional aspect in SPM application is the destructive action of the tip on 

the sample. Under this approach, the indentation methods, scratching, wearing on 

the nanometer scale is realized. 

Thus, using the measurement methods in the field of micro-and nanomechanic 

on the bases of the scanning probe microscopy is present a wide opportunity to as-

sess the physical and mechanical properties of materials at the nanoscale, and the 

modeling of precision contact area of the surface. It is necessary to develop ade-

quate models of contact and non-contact interaction in the system tip-sample for re-

ceiving more accurate solution. 
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Introduction. The concepts (theories, analytical solution procedures, finite el-

ement formulations) that have been derived for analysis of large, medium-size or 

small structures and structural components (like those in civil, aerospace and me-

chanical engineering) can be readily used to analyze behavior of micro-structures 
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and nano-structures. Of course, (non-trivial) modifications and further developments 

of now well understood and matured concepts of structural analysis might be neces-

sary. That might relate to constitutive equations and multi-physics, i.e. strongly (or 

weakly) coupled problems that consider simultaneously (or sequentially) two or 

more physical problems related to a structure (e. g. thermo-mechanical, electro-

thermo-mechanical, etc.). Moreover, some specific problems may arise when deal-

ing with micro-structures and nano-structures. Nevertheless, in our view many as-

pects of behavior of micro-structures and nano-structures (in different fields of en-

gineering, medicine and natural sciences) can be addressed by the available meth-

odologies of structural analysis. 

Modeling of material and structural failures.With the above in mind, we aim 

to present our experience in numerical (finite element) failure analysis of ductile, me-

tallic (elastoplastic) shell, beam and frame structures. Local material failure in elasto-

plastic structures produces localized plastic deformation, sometimes called shear band 

(in solids), (softening) yield line (in plates and shells), and (softening) plastic hinge 

(in beams). To successfully deal numerically with this kind of localization (or materi-

al instability) phenomena, several different (local and non-local) approaches (often 

called localization limiters, e.g. [1]) have been proposed. We have used in our work 

two different kinds of localization limiters (one for shell finite elements and another 

one for beam finite elements) in order to eliminate finite-element-mesh lack of objec-

tivity in dealing with localized softening inelastic behavior. 

In what follows, we will shortly present the following: (i) geometrically and 

materially nonlinear shell computational model that can be used for failure analysis 

of metallic shells, (ii) geometrically and materially nonlinear beam computational 

model that can be used for failure analysis of metallic beams and frames, and (iii) 

multi-level (i.e. shell-beam or meso-macro) computational paradigm to failure anal-

ysis of frames. The later takes into account both kind of local instabilities, i.e. geo-

metrical (local buckling) and material (localized plastic deformation), that consider-

ably contribute to softening structural response (i.e. decreasing in loading with sim-

ultaneous increasing in displacements). 

Computational failure model for metallic shells.Our shell computational 

model is based on geometrically exact shell finite element formulation. It describes 

kinematics of one director shell model without any simplifications (i.e. finite rota-

tions of the shell director are described without any singularities, and they are unre-

stricted in size). We consider small-strain elastoplastic constitutive equations with 

isotropic and kinematic hardening, defined either in terms of stress-resultants (i.e. 

by in-plane and shear forces, and moments) or in terms of five components of the 

stress tensor. We note that it is very difficult to derive consistent elastoplastic stress-

resultant constitutive equations for shells. Also, the resulting equations are complex. 

For example, the consistent shell counterpart of von Miseselasto-plasticity for solids 

(called Ilyushin-Shapiro elasto-plasticity) has two surface yield criterion. That calls 

for special integration algorithms for internal variables in the corresponding numeri-

cal finite element formulation, as shown e.g. in [2]. Our shell computational model 

uses the simplest localization limiter that follows the idea of using strain-softening 
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constitutive relations and adjusting the material softening parameters such that the 

computed plastic dissipation in the softening regime remains the same regardless of 

the chosen finite element mesh. We note that this kind of modification is much 

clearer if shell constitutive equations are defined in terms of stresses. With the shell 

computational model, shortly described above, we can perform failure analysis of 

shells and other thin-walled structures. Such failure analysis takes into account 

global (as well as local) buckling and localized material failure (material softening). 

Computational failure model for metallic beams and frames.To perform 

failure analysis of beams and frames, we derived planar, stress resultant, beam finite 

element formulation. It takes into account geometrical nonlinearity only approxi-

mately by von Karman approximations of non-linear strains. In order to accommo-

date localization limiter based on deformation discontinuity, we enriched standard 

Euler-Bernoulli beam kinematics by a strong-discontinuity jump in cross-section 

rotation. Small-strain elasto-plastic constitutive relations with hardening are defined 

in terms of beam moment and axial force. When a cross-section of a beam reaches 

its failure capacity, the softening plastic hinge appears at that place. Rigid softening 

plastic constitutive law is applied at the softening plastic hinge, relating the hinge-

moment and the rotation-jump. With such beam formulation, failure of metallic 

frames can be analyzed. However, one has to note that possibility of local buckling 

of a frame structural element (i.e. local buckling of a flange) and localized material 

failure (i.e. failure of material of part of cross-section) can only be considered 

through the applied moment-curvature and moment versus jump-in-rotation curves. 

This observation led us to apply a two-scale (shell computational model as a meso 

scale and beam computational model as a macro scale) failure analysis of frames, 

shortly described below, see [3] for details. 

Two-scale (shell-beam) approach to failure analysis of metallic frame 
structure.The basic idea goes as follows. Take a representative unit of a frame 

structural element, and perform its failure analysis (at some pre-described level of 

axial force) by the computational shell model that is shortly described above. Result 

of such analysis is a moment-rotation curve. By using this curve one can construct 

beam constitutive relation data [2]: moment-curvature and softening-plastic-hinge 

moment versus jump-in-rotation curves. Those curves naturally incorporate local 

geometric and material failures, since the shell computational model (the meso-scale 

model) is able to capture them. The obtained curves are further used for failure 

analysis of the entire frame performed by the beam computational model (the mac-

ro-scale model) shortly described above. Such two-level (two-scale) analysis com-

bines the better of two worlds. On one side, there is effectiveness and robustness of 

the (macro-scale) beam computational model that is used for analysis of entire struc-

ture. On another side, there is a refined representation of localized instability effects 

(both geometric and material) by the (meso-scale) shell computational model. The 

latter is captured and stored within the (macro-scale) beam model in a manner which 

is compatible with enhanced beam kinematics with embedded strong-discontinuity 

in rotation. The applied multi-scale procedure is weakly coupled, since computa-

tions are carried out sequentially (results of the shell model computations are stored 
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to be used within the beam model). One of main features of described approach is 

that detection and development of softening plastic hinges in the frame is fully au-

tomatic (and spreads gradually in accordance with stress redistribution in the course 

of the nonlinear analysis). 

Conclusions. Examples of failure analysis of metallic shell, beam and frame 

structures, as well as examples of two-scale (shell-beam) failure analysis of metallic 

frame structure will be shown at the conference. We believe that shell and beam 

computational models and failure analysis procedures, shortly described above (see 

[2], [3] for further details), can be also successfully applied for micro- and nano-

structures of shell, beam or frame type that are made of different metallic (or other 

elasto-plastic) materials. 
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Introduction. Textile composites and pneumatic structures have become in-

creasingly popular for a variety of applications in a civil engineering, architecture, 

aerospace engineering, etc. [1]. A toroidal membrane of the circular cross section, 

composed of an isotropic elastic material and inflated by the uniform internal pres-

sure has been considered in [2]. Equilibrium states of the membrane composed of 

an anisotropic (reinforced of fibers) material were found in [34].  

Basic equations. It is supposed that the toroidal membrane is made of a cylin-

drical textile composite pipe which contains two systems of threads located on par-

allels and meridians. The lengths of not deformed threads are equal accordingly L 

and l. We assume that the fibers are disposed frequently enough. After averaging we 

get the dimensionless differential equations, describing the axisymmetric defor-

mation of the anisotropic toroidal membrane 
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For the incompressible neo-Hookean material 
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