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1. INTRODUCTION

In the solution of a number of problems of probability theory the method of
probability metric has attracted much attention and it has successfully been used lately as
R. M. Dudley [1], H. Kirschfink [4] and V. M. Zolotarev [9], [10], [11] and [12].

The essence of this method is based on the knowledge of the properties of metrics in
spaces of random variables as well as on the principle according to which in every problem
of the approximating type a metric as a comparison measure much be selected in
accordance with the requirements to its properties.

In recent years several results of mathematics and informatics have been established
by using the probability metric approach. Results of this nature may be found in
Alison L. Gibbs and Su Francis Edward [2], John E. Hutchinson and Ruschendorf Lunger
[3] and Neininger Ralph and Ruschendorf Lunger [5].

The main purpose of the present note is to introduce the definition and properties of a
probability metric which is based on Trotter’s operator. An applicafion in weak laws of
large numbers are indicated.

The received results in the last section are extensions of that given in [6] and [7]. It
should be noted that the results for depend random variables have been obtained by
H. Kirschfink in [4].

2. PROBABILITY METRICS

Let us denote by W the set of random variables defined on some probability space
(Q, 4, P).

Definition 2.1. The mapping d : ¥x ¥ —[0,00) is called a probability metric,
denoted by denoted by d{X,Y), if

i P(X=Y)=1 implies d(X,Y)=0

ii. d{X,Y)=d(Y,X)
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i, d(X,Y)<d(X,2)+d(zZ,Y)
for random variables X,Y and Z in V. :

Definition 2.2. A probability metric 4 is said to be simple if its values are determined
by a pair of marginal distributions Py and Py . In all other cases d is called composed.

It should be noted that, for a simple probability metric the following forms are
equivalent

d(X,Y)=d(Py,Py).
Definition 2.3. A probability metric 4 is called ideal of order s >0 on a subspace

¥ ¥ xW¥, if for X,Y,Ze‘{’* with X and Y independent of Z, and c#0, the

following two properties hold
i regularity: d(X +Z,Y + Z)<d(X,Y)

1in
ii. homogeneity: d{cX,cY)< | € is d(X,7).
An interesting consequence of the regularity and homogeneity properties is the semi
additively of the mewric d: Let X, X5,..., X, and 1, 1>, ..., ¥, be two collections of
independent random variables, then one has for X, Y with real numbers
cj,lSjﬁn,SZO
i ] n s
| of |3 X, 3 |s 3 ej[aly;,.y;).
y as j=1 J=1 J=1
_ We now turn to some examples for illustration of well-known probability metrics.
'$ in
lem 1. Kolmogorov metric (Uniform metric). Let us consider the state space, Q=R and
{in let us denote Fy (x)=P(X <x) and Gy(x)=P(Y < x), then the Kolmogorov metric is
denoted by
>h°d dg(F,G):= sup IFX(x)—Gy(x)|. (2.1)
1in x€R
nger . This metric is a simple metric and also called the uniform meiric.
ofa 2. Levy metric Let the state space Q = R! , then the Levy metric is defined by
s of d(F,G)= inf {G(x ~8)-8< F(x)< G(x+8)+8,Vx e R! } (2.2)
&0
71. It The Levy meiric does metrize weak convergence of measures on R' and it is a simple
1 by metric.
3. Prokhorov (or Levy-Prokhorov) metric. Let u and v be two Borel measures on the
_ metric space (S, d), then the Prokhorov metric dp is given by
dp(u,v):= inf {u(A)S \"(A8 )+ g, for all Borelsets Ae (S,d)}, (2.3)
! £>0
ipace lf where At :={yeSaxcAd{x,y)<e}.
ric ! This metric is theoretically important because it metrizes weak convergence on any
erie, | separable metric space.
‘ 4, Zolotarev metric. The Zolotarev metric for distributions Fy and Fy is denoted by
ar(r. p=spl| E[(0)- 70 e mbsr i@ )} e
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where C(Rl) stands for the class of all bounded, uniformly continuous real-value functions
fon R ,and
plssr+ iR =1 7 <o) 7O~ £ 00 < -5t |
here 0 <s<L, reN.
Moreover, Cr(Rl)': {f eC(Rl):f(j) eC(Rl), 1<j<r },r eN.
It should be noted that Cr(Rl)c Dy (s;r +1;C (Rch C(;r‘i’I )

The Zolotarev metric dz{X,Y) is ideal metric of order 3. It is easy to see that, for
X ; and ¥; are pairwise independent random variables,

dz[ﬁ X, 5 Y‘]s Sdz(x,,Y,).

J=1 J=l J=
It is well - known that convergence in d7 implies weak convergence and it plays great role

in some approximation problems.
In addition, we also illustrate some relationships among probability metrics in (2.1),
(2.2) and (2.3) as follows.

1. For probability measures p, v on R' with distribution functions F, G, H '
d{F,G)s dg(F,G).
2. If G(x) is absolutely continuous (with respect to Lebesgue measures), then
dg (F,G)< (L+suplG'(x))-d (F.G).

X

3. For probability measures on R,
d;(F,G)<dp(F,G).

3. THE TROTTER METRIC

The definition and properties of Trotter metric are considered in this section.
Definition 3.1. The Trotter metric dy of two random variables X and ¥ relatedto a

function f 1s defined by
dr(X,Y; f)=sup { E[f(x+0)]-E[f(¥ +2)]i; f e C"(Rl)}.
teR'

‘The most important properties of the Trotter metric are summarized in the following. The
proofs easy to get from the properties of the Trotter operator (see [5], [2], [3] and [4] for the
complete bibliography).

1. d7(X,Y; f) is a probability metric.

2. dp(X,Y; f) is not a simple metric because of neither regularity nor homogeneity
holds.

3.Ifdp{X,Y;f)=0 for feC" (R‘ ) then Fy =Fy.
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4. For all x e C(F),
lim Fy, (x)= Fy (x)

H—>+ o0

if Hm dp(X,.X;f)=0, for fec"(Rl).

R 4 o0

5. Let Xy, X,...,X,and ¥}, ¥»,..., ¥, be two collections of independent random
variables, then

" L M
J=l J=1 J=1

6. In case when X, X,,...,X,and}}, 15,...,Y, be two collections of i.i.d.
random variables, then

J=1

dT(ile‘ % Yj;stndT (X1 7).
i=

7. supdp {(X,Y;f)=dz (X,Y) forevery f e D (s;r+I;C(R1)).

4, AN APPLICATIONS IN WEAK LAWS OF LARGE NUMBERS

The following results concerning the rates of convergence in the weak laws of large
numbers can illustrate the important role of the Trotter metric in theory of probability.

n
Let us define S, = nl 2 X; and tet X9 is denoted the degenerate random variable
Jj=1
at point ), We are now interested in the rate of convergence of the probability metric to
7€ro,

dT(Sn;XO;f) -0 as n—+w,

Theorem. Let{X, ,n 21} be a sequence of i. 1. d. random variables with zero means
and finite »-th absolute moments E(‘XJ,»'F) <M<+o for r>1 and for j=12,.,n
Then, for every [ e C” (R] ) we have the following estimation

dT(Sn;XO;f)=o(nh("‘l)} as n—>+oo (4.1)

Proof. Since f € C" (R l), we have the Taylor expansion

)
f7'X 4= kgof—];!i’—)n'kxﬁ + (YO 07X - FO O X )

where 0<0; <1
Taking the expectation of both sides of last equation, we have

r (&)
B X +0)= £ LDk p i s
r=0 k!
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+ M) O+ 07 - SO0 )" dFy (x), where 0<6; <1,

Then CUOSIEDIRND Ep G R N EAUR
[ ) My 1 FO¢ronlx) - r® (:)‘ " dFy (0. “2)
where 1, = supl o), 0<8; <1
{eR'

k
Since f e C"(R"), it follows | f], < C = const, and because of E|X ;| <M <+
for k=1,2,..r, weget

ki[(k!n" A1, E[X j|" 1=o(l), as n— +oo, (4.3)
=1

Subsequently, by estimating the integral of right side of (4.1), we have
[y e r O vy - 1O @b Py ()=

= [(r!nr)—l ]-{xliné(s)lf(r)(t + eln_lx) - f(r) U)J : !"cli“dFX‘r (x) +

S s O+ 00 - 1O W dFy =1+ 1.

Because of feC™(R'), so for every >0, there is 8¢} >0, such that, for

!n _lx’ < 8(g), we have

< E.

FOarenn-r00

It follows that

I <elpld dFy (x)=cElX]". 4.4

Since EIX |r < +¢0, so we get, for every ¢ > 0, and for n is sufficiently large, we have
Iy <2¢|f], . (4.5)
Combining (4.4) and (4.5) and since ¢ 1s arbitrary positive number, so we have

sup\E[ F07X 401 f@)=o(n™) as 1> oo (4.6)
! |

Then we have, for f e C'( R ), using the properties of dp,
dT(Sn;XO;f) < ndT(n“lXj;n_]X?;f),
We get the complete proof

dr (S, X% =0ty as o 4o w
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