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Abstract

Quantum mechanical equations of motion are obtained for particles and spin in
media with polarized electrons in the presence of external fields. The motion of elec-
trons and their spins is governed by the exchange interaction, while the motion of
positrons and their spins is governed by the annihilation interaction. The equations
obtained describe the motion of particles and spin in both magnetic and nonmag-
netic media. The evolution of positronium spin in polarized media is investigated.
Media with polarized electrons can be used for polarization of positronium beams.


http://lanl.arxiv.org/abs/hep-ph/0403107v1

1 Introduction

The quantum mechanical description of the motion of particles and spin in matter
is a very important problem. The classical theory of motion of particles and spin has
been developed in great detail (see [1, 2])). A quantum mechanical equation of motion of
relativistic particles in an electromagnetic field was derived by Derbenev and Kondratenko
[3]. The motion of the spin of relativistic particles in an electromagnetic field is described
by the Bargmann—Michel-Telegdi (BMT) equation [4]. The Lagrangian with an allowance
for terms quadratic in spin was obtained in [5, 6]. The corresponding equation of spin
motion was presented in [7]. The interaction between polarized particles and polarized
matter was analyzed in [8, 9].

In the present paper, we find quantum mechanical equations of motion of particles
and spin for relativistic particles with arbitrary spin that move in media with polarized
electrons in the presence of external fields. The system of units 7 = ¢ =1 is used.

2 Hamiltonian for particles in polarized media
For particles with arbitrary spin, the Hamiltonian can be derived with the use of the

interaction Lagrangian £, obtained in [5, 6]. This Lagrangian contains terms that are
linear (£,) and quadratic (£9) in spin:
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where ¢ = 2um/(eS), v is the velocity operator, 7 is the Lorentz factor, @) is the
quadrupole moment, and S is the spin operator. The Hermitian form of formula (1)
is obtained by the substitution £ — (£ 4 £1)/2. The total Hamiltonian is given by

H=vm?+7n2+ed— (L) + Ly), (2)

where ™ = «ymv is the operator of kinetic momentum and & is the potential of the
electromagnetic field. We neglect the commutators of the operators of dynamic variables.

The polarization of the electrons of the medium does not change the form of Hamilto-
nian (2) if a beam contains neither electrons nor positrons. This is attributed to the fact
that the average field acting on particles in the medium is characterized by the electric
field strength E and the magnetic induction B. However, the form of the Hamiltonian is
changed if the beam consists of electrons or positrons. There is an exchange interaction
between electrons, which is very strong.” In the nonrelativistic case (v < ¢), the magnetic

DRecall that the exchange interaction is responsible for the ferromagnetism.



field for electrons should be replaced in (2) by the effective quasimagnetic field [8]
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———P, Heff = (P-n)n, (3)
where N and P =< ¢’ > are the polarization density and vector (average spin), respec-
tively, of polarized matter electrons and n = v /v. The main contribution to the effective
quasimagnetic field, H¢;,, is made by the Coulomb exchange interaction, or the Coulomb
scattering. The exchange magnetic scattering yields the lesser contribution, Hf} .

For nonrelativistic positrons in polarized media, the effective field with an allowance

for the annihilation interaction, Hy s> 1s determined by
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Formulas (3) and (4) can be represented in a more compact form by introducing the
magnetization vector (magnetic moment of a unit volume) M:

8 N
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For isotropic magnetic materials, one can introduce a magnetic permeability pi,,:
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An appropriate expression for the Hamiltonian is expressed as (G = G, G,) [9]

’H:\/m2+w2+e®+%{g(s-(})-l—(g—l)(S-[Exv])}. (7)

3 Equations of motion of particles and spin

The equation of particle motion in both polarized and unpolarized media is the same
if the Hamiltonian remains unchanged.
For electrons and positrons, the equation of particle motion is given by [9]

dm

" —eE+e[v><B]——V{ (s-G)+(g—1)(s-[E><v])}. (8)

For particles with arbitrary spin, the equation of spin motion with regard to the terms
quadratic in spin is given in [7]. For nonrelativistic electrons and positrons, the equation
of the spin motion takes the form [9]

%:%{g[SXG]%—(g—l) S x [E xv]]}. (9)

The effect of the exchange interaction on the spin motion is stronger than that on the
particle motion. The equations can be used for dia-, para-, and ferromagnetic media.

4  Polarization of positronium beams by polarized media



Positronium beams can be polarized under passing through the polarized medium.
Such a possibility takes place due to a dependence of the ortho-para-conversion (spin-
conversion) rate on the polarization of the positronium.

Positronium atoms have spin 0 (para-positronium, p-Ps) or 1 (ortho-positronium, o-
Ps). Only o-Ps atoms pass through the medium because p-Ps atoms annihilate very
quickly. As a rule, the positronium energy does not exceed several eV. In the matter, the
o-Ps lifetime can be shortened by several processes, namely, the pick-off annihilation, the
ortho-para-conversion that is the spin-conversion, and chemical reactions [10].

The spin-conversion takes place in para- and ferromagnetic media, whose molecules
contain unpaired electrons. In these media, the spin-conversion rate is generally much
more than the rates of the pick-off annihilation and other processes. As particular, in the
oxygen gas the spin-conversion rate is dozens of times larger than the pick-off annihilation
one [11]. The same conclusion can be made from an analysis of experimental data on the
spin-conversion in solutions of HTMPO [12].

We consider the simplified description of the positronium polarization process. For a
more detailed description, the method and results obtained in Ref. [13] can be used.

Let all the unpaired electrons of the matter be polarized along the z-axis (Fig. 1).
The spin exchange interaction can cause changing the o-Ps spin or its projection. This
process can result in both the ortho-para-conversion and the prompt annihilation of the
o-Ps.

However, the simple analysis shows that the ortho-para-conversion is only possible
when the o-Ps spin projection onto the z-axis equals either —1 or 0 (see Figs. la,b).
When it equals 1, flipping the spin is forbidden (see Fig. 1c).

The operator of the spin exchange interaction has the form

P=—-J(1+4s-s")/2, (10)

where s and s’ are the spin operators of the o-Ps electron and the matter electron, re-
spectively, and J is the exchange integral that determines splitting energy levels. The
operator P mixes the states of the o-Ps and p-Ps.

The o-Ps with S, = —1 interacting with a matter electron (s, = 1/2) is described by
the spin wave function |1, —1;1/2,1/2). As a result of simultaneous flipping the spins of
the o0-Ps electron and the matter one, the o-Ps can convert into the p-Ps with the spin
wave function |0, 0;1/2, —1/2). This process is characterized by the matrix element?

(0,0;1/2,—1/2|P|1, -1;1/2,1/2) = —J/V/2.

Moreover, flipping the electron spins without the o-Ps—p-Ps conversion can also occur.
The o-Ps spin becomes zero. The matrix element characterizing this process equals

(1,0;1/2,—1/2|P|1,—1;1/2,1/2) = —J /2.

Analogous processes take place for the o-Ps with S, = 0. The spin exchange interaction
between the 0-Ps electron and the matter one with and without the ortho-para-conversion
is described by the matrix elements

(0,0;1/2,1/2|P|1,0;1/2,1/2)=—J/2 and (1,1;1/2,—1/2|P|1,0;1/2,1/2)=—J/\/2,

2)

All the matrix elements of the operator s - s’ are given, e.g., in Ref. [14].
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respectively. Coupled electrons do not contribute to the spin-conversion because matrix
elements characterizing the exchange interaction between the o-Ps and the pair of coupled
electrons are zero.

For the o-Ps with S, = 1, all the corresponding matrix elements are zero. Therefore,
the majority of o-Ps atoms passes through the medium without the annihilation. The
pick-off annihilation is possible for the o-Ps atoms with any spin projection.

The o-Ps lifetime is changed by a magnetic field into the medium. This field can be
strong enough. Asis known, such a field does not change the lifetime of the o-Ps with S, =
+1 and shortens the lifetime of the o-Ps with S, = 0 (see Ref. [10]). This circumstance
accelerates the process of polarization of the o-Ps beam. However, the evaluation shows
such an acceleration is not very significant. For example, the pick-off annihilation shortens
the o-Ps lifetime more greatly than the magnetic field in ferromagnetic media.

5 Discussion and conclusions

Magnetic crystals can be effectively used for the rotation of the polarization vector
of particles. Even for neutrons, whose magnetic moment is relatively small, for B ~ 1
T, the angle of rotation of the polarization vector per unit length is of the order of
A®/Al ~ (¢/v) x 1072 rad/cm.

The rotation of the polarization vector in magnetic crystals reaches especially large
values for nonrelativistic electrons. It follows from (6) and (7) that the angular velocity
of the spin precession of nonrelativistic electrons is increased by the factor of (c/v)? due
to the exchange interaction. For B ~ 1 T, we have A®/Al ~ (¢/v)* x 1 rad/cm in order
of magnitude. In particular, when v/c ~ 0.1, we have A®/Al ~ 10° rad/cm.

The use of magnetic crystals may also be sufficiently effective for the rotation of the
polarization vector of relativistic electrons.

The Stern—Gerlach force, which splits beams according to the polarization of particles,
is considerably increased. However, the use of polarized media for splitting electron beams
according to the polarization is seriously hampered by the small value of the energy of
interaction between the spin of electrons and a quasimagnetic field we) (of the order of
1 eV or less) and a multiple scattering that increases the transverse energy of electrons.
If the transverse energy of electrons is greater than |W(S)|, splitting the beam according
to the polarization becomes impossible.

The formulas obtained in this work are also valid for beams of polarized nuclei.

Media with polarized electrons can be used for the polarization of positronium beams.
The spin direction of positroniums coincides with the spin direction of polarized electrons.

The considered effect of the polarization of positronium beams is more important
for para- and ferromagnetic media without conductivity electrons, e.g., ferrites. The spin
exchange interaction of o-Ps atoms with conductivity electrons leads to the spin-conversion
that does not depend on the o-Ps polarization. As a result, a presence of conductivity
electrons can cause a strong background making the effect unobservable.

It is important that the intensity of the positronium beam passing through two samples
magnetized in different directions, depends on the angle ¢ between the magnetization axes.
This effect is similar to passing the unpolarized light through two polarizers when their
axes do not coincide.

Polarized positronium beams can be used for an investigation of magnetic media. The



investigation can include monitoring the process of magnetization and determining the
magnetic structure of materials.
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Figure 1. Spin-conversion of the o-Ps: a) the o-Ps (hatched) with the spin projec-
tion S, = —1 can convert either into the p-Ps (white) or into the o-Ps with S, = 0;
b) the o-Ps with S, = 0 can convert either into the p-Ps with S, = —1 or into the
o-Ps with S, = 1; ¢) the o-Ps with S, = 1 cannot convert.



