EFFECTIVE IMPLEMENTATION OF WORD-BASED REGULAR
EXPRESSIONS NOTATION IN NATURAL LANGUAGE
PROCESSING '

Denis Postanogov

ScienceSoft, Minsk, Belarus, e-mail: dpostanogov@scnsafi.com

Abstract, This paper introduces a technique that sllows to build deterministic finite-state
automata from word-based regular expressions that are described in [1]. The automata obtained
by this technigue can be used in automatic analysis of natural language sentences without any
loss of algorithmic deterministic antomata efficiency. The paper shows the difference between
traditional and word-based regular expressions and explains the need for additional transforma-
tion of word-based regular grammar in order to build deterministic finite-state automaton.

Introduction

Nowadays apparatus of regular expressions (RE) and finite-state automata (FSA)
serve as the most popular and universal tool for solving tasks of automatic text processing
{5]- In fact, regular expressions provide sufficiently comfortable technique of developing
alphanumerical data processing rules of different types [3]. Finally, rules, grammars and
grammar parts written in notation of regular expressions can be transformed to the deter-
ministic finite-state automata (DFSA) of certain type that depends on the purpose of
grammar rules. DFSA apparatus allows to efficiently apply grammar rules to alphanumeri-
cal data, taking linear O(n) time, where » is the length of the input sequence [2, 4].

However, different stages of solving automatic natural language processing tasks
require taking into account more subtle features and criteria rather than just a symbolic rep-
resentation of text elements. Word-based regular expressions (WRE) apparatus can be used
as an appropriate and unified notation for writing grammar rules for processing sentences
and other structures that have words or word phrases as their basic elements {I]. This pa-
per introduces a technigue that allows to transform word-based regular expressions to de-
terministic finite-state automata of different types. The automata obtained by this technigue
can be used for processing natural language sentences (word sequences). On this basis a
deeper and more detailed automatic analysis of text data can be accomplished without any
loss of DFSA algorithmic efficiency.

Rationale of additional transformation of WRE

Unlike traditional regular expressions that expect character-based input strings,
WRE notation uses word-based tokens, alphabet symbols that constitute an word-based
alphabet. Each of these tokens is a complex structure that doesn’t obligatorily show a one-
to-one correspondence with the elements of input sequence.

As shown in the examples of Table 1 one WRE token can correspond to more than
one words of the input sentence. And vice versa, a single word from the input sentence can
correspond to a set of tokens from WRE. This implies that in the general case DFSA for
the word-based regular grammar cannot be built without additional transformations.

218

,. f



4\ WRE tokens corresponding Ao POS-tagged corresponding to-
word references words ken references

1 NN ab a water NN 1234

2 "water"” u b gas NN 134

3 fa-z]+' abc ¢ good_JJ 34

4 NN abed d | re-emphasis VB 4

Table 1 Ambiguity of correspondence between WRE tokens and POS-tagged words as ele-
ments of input chain

To prove it, let’s consider the following example of WRE:
Ta-z]+' [0-9]+' | "water” NN (1)
If we try to build DFSA for this expression applying any algorithm of DFSA build-
ing used for traditiona} regular expressions, we’ll get the following Rubin-Scott automaton
shown in Fig.1:

"water"

o

Fig. 1. Automaton built from WRE using traditional technique.

An attempt to apply this automaton to the following input sequence of part of

speech-tagged (POS-tagged) words
water NN pump NN (2)

shows that such automaton is not deterministic. The POS-tagged word ‘water NN’ corre-
sponds to the automaton transition from the initial state 0 to the state 1. Then the word
‘pump_NN’ doesn’t have an exit from the state 1. That is, in this case the given word se-
quence is not admitted by the automaton. At the same time, the word ‘water NN corre-
sponds to the automaton transition 0—3. This means that for a correct analysis of the input
sequence it is necessary to maintain a set of the current automaton states on each iterative
step. In other words, it means that the automata built can only be used as non-deterministic
which results in a significant loss of text analysis effectiveness.

In the next paragraph we suggest a method that allows to transform the given WRE
to the regular language that can be used as the basis of DFSA building.

Expansion of word-based regular expression alphabet

Let’s assume that £ = T\, T, ..., T, is the alphabet of tokens of the given WRE.

Let’s denote by Words(T) the set of tagged words that corresponds to the token T.
In a diagram each token T can be represented as a circle that is in fact a set of words
Words(T). Tokens NN and “water” will meet the correlation shown in the diagram
(see Fig.2).

The intersection of the circles in the above diagram corresponds to the word *water’
that is tagged as NN, i.e. it shows the token “warer /NN.

218




Fig. 2. Intersection of word sets corresponging fo
the tokens NN and “water .

Let's consider the token T that describes a set of tagged words
Words(T) = Words(T;) 1 Words(T)). This token will be called intersection of tokens T, and
T;. While building the intersection one should take into account that the intersection of cer-
tain pairs of tokens may resuit in an empty set of words. For instance, for the simple word
tokens "water" and "gas" or POS-tag tokens NN and JJ the intersection results in an empty
set. In this case we wil] say that the intersection of tokens doesn't exist.

Let ' be an alphabet that consists of all possible intersections of tokens from the
alphabet . This alphabet ' will be called the expanded alphabet of WRE. We can say that
the expanded alphabet describes all the sets that correspond to the intersections in a dia-
gram. Here the tokens of the alphabet £ form the intersections with themselves so they are
included in the resulting expanded alphabet. We should also notice that the expanded al-
phabet will consist of 2°-- 1 tokens at most, where » is the number of tokens of the source
alphabet .

Let's define on the expanded alphabet of WRE the ordering relationship that meets
the following rule: any token from the expanded alphabet that 1s results from the intersec-
tion of tokens T; and T}, has the index &, where k<j u k<i. The expanded alphabet Z"
having such linear ordering relattonship is called ordered expanded alphabet of WRE.

We propose to use the following algorithm in order to build the ordered expanded
alphabet Z" from the given source WRE alphabet X.

Let’s assume that target expanded alphabet Z" is an ordered list structure that sup-
ports the operation of element insertion. Then we can use the following procedure.

i. Put special token V that is called "any word" into Z"". We should notice that inter-
section of any token T with ¥V will gives T.

1. If there are no unprocessed tokens left in Z, stop. The ordered set £" can be ob-
tained by numbering the list elements in the order they occur.

iii. Otherwise, choose any unprocessed token T from X.

iv. Try to get the intersection of token T with all existing tokens T, from X" one by
one starting from the lowest ;. If the intersection T N T, exists then it is inserted in the list
of tokens of X" before the token T,.

v. Go to step il.

To illustrate the algorithm, let’s consider the alphabet of WRE tokens for rule (1):

Z={ fa-z]+', '[0-9]+', "water”, NN}.

0.T"={V}.

1). Choose token ‘fa-z]+’ from Z. Try to intersect it with the first and single =" to-
ken V. The result of intersection is equal to ‘fg-z/+'. Insert it into %" before V.

= faz]H. V.

2). Choose next unprocessed token '/0-97+' from Z. Intersect it with the tokens from
2" step by step:

220




'[0-9]+" " 'fa-z]+' = O (intersection doesn’t exist);
"[0-9]+ N ¥ = '[0-9]+;

= { -]+, (0-9]+,Y }.

3)."water”" N ‘fa-z]+' = "water"”,

Since we got "water” as a result of intersection we don't need to proceed with the
intersection process for other tokens from £ because tokens that are more narrow can not
be inserted after the token "water".

As aresult, Z" = { "water", '[a-z]+','[0-9]+', ¥V }.

4) Choose the last token NN from alphabet X. Its intersections arc:

NN N "water” = "water"/NN,

NN n ‘fa-z]+' = '[a-z]+'/NN;

NN A ‘f0-9]+' = '[0-9]+YNN,;

NN n V = NN,

Z" = { "water"/NN, "water", 'fa-z]+/NN, '[a-z]+','[0-9]+"/NN, '[0-9]+', NN, ¥V }.

As a result we have the following ordered expanded alphabet:

"= { 1. "water”/NN, 2. "water", 3. 'fa-z]+'/NN, 4. '{a-z] +', (3)
5.'[0-9]+'/NN, 6.'[0-9]+',7. NN,8.V }.

Let T be a token from the source WRE alphabet Z. Token T; from the ordered al-
phabet X" is called child of the token T if it either corresponds to the token T itself or it is
obtained as a result of the intersection of any child of T with some other token (recursive
definition). The diagram shows that the children of T agree with the intersections that
completely belong to Words(T) set.

Let’s denote by Children(T) a set of indices of children of T from the ordered al-
phabet I". Table 2 shows the values of function Children() for the tokens from (3).

T Children(T)
fa-z]+' 1,2,3,4
[0-9]+' 5,6
"water" 1,2
NN 1,3,5,7

Table 2 Values of children() function for tokens from (1)

In order to transform the original WRE to the regular language for building DFSA,
we replace each token T with disjunction (OR) of numbers from Chiidren(T). In such a
way WRE from example {1) will be transformed to the following regular expression:

(1121374)(5716) | (1{2)(L{3]5]7)

At further steps this regular expression will be transformed to the following DFSA
(see Fig.3).

DFSA built can be used to parse sentences on the basis of a set of source WRE
rules according to the following technique. Each POS-tagged word W from the sentence
being processed should be converted to the smallest number j of the token T, from the ex-
panded alphabet Z", where T,: WeWords(T)).

221



)

Fig. 3. Deterministic finite-state automaton of transformed WRE.

In order fo instantiate the parsing of sentence with the automaton built, let’s con-
sider phrase (2). The smallest token that admits the POS-tagged word water NN from (3)
is a token “water'/NN number 1. The word pump NN doesn’t admit the first and second
tokens, but admits token 'fa-z/+/NN number 3. Thus, the word sequence (2) will be trans-
formed into the input sequence of weight “1, 3” of the automaton (4). As can be seen, this
type of input is admitted by the automaton.

Conclusion

This paper describes the techniques that are used to expand the WRE alphabet as
well as to transform the source WRE. The techniques mentioned allow to apply the DFSA
apparatus to the analysis of tagged sentences using WRE notation that considers various
complex characteristics of sentence words (i.e. dictionary information, spelling and others).
In this case it is possible 1o achieve a complexity of sentence analysis that is estimated as
O(n-(I+d)), where n is the number of words in the sentence, / is the average length (number
of letters) of the word and d is the average numnber of tags in the dictionary for one word.
The above mentioned technigue of WRE alphabet transformation and expansion can also
be applied to the processing of other regular structures that present an ambiguity with re-
spect to the correlation of input sequence elements with the terminal symbols.

References

[1] A. Cheusov. Word-based regular expressions in NLP tasks. Proceedings of the I Inter-
national conference INFORMATIONAL SYSTEMS AND TECHNOLOGIES 02, Minsk
2002.

[2] A. Gill. Introduction to the Theory of Fimte-state Machines, McGraw-Hill Book Com-
pany, New York, 1962

{3] M. Gross and A. Lentin. Notion sur les Grammaires Formelles. Gauthier-Villars, Paris.
2-éme edition, 1970,

[4] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison Wesley, Reading, Massachusetts, 1979.

{5) Jurafsky D., Martin J.H. (2000). Speech And Language Processing. — Prentice Hall,
Upper Saddle River, New Jersey 07458.




