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Abstract. This paper considers the least absolute deviations (LAD) test of a unit root nult without
drift when dismibutions of innovations are fat tailed. The fimiting distributions of the test statistics
are expressed in terms of functionals of a standard Brownian motion. Percentiles are tabulated. A
Monte Carlo experiment indicates that the LAD tests dominate the Dickey-Fuller tests when inno-
vations are fat tailed, except distributions with extremely heavy tails such as Cauchy.

1. Introduction

Economic time series often exhibit nonstationary behavior. In addition, a consensus
exists, that distributions of first differences of many time series encountered, for example, in
finanice, are fat tailed. Unit root tests developed by Fuller (1976) and Dickey and Fuller (1979,
1981) and many alternatives are based on least squares (LS) procedure. There is a consider-
able drawback in applying these tests in small samples when innovations are fat tailed.

This paper proposes a procedure of unit root testing, which is robust in the situations of fat
tailed distributions. The test is based on the least absolute deviations (LAD).

Section 2 gives the limit distributions of the new tests statistics developed here, while
Section 3 presents the table of critical values. In Section 4, the empirical powers of the LAD
unit root tests are compared to powers of the Dickey-Fuller tests. Section 5 concludes.

2. Least absolute deviations estimator and its limiting distribution
Suppose that the regression model is

T ,
v, =x,p+u, i=LK ,n,

where y; € R is a dependent variable, x; € R™! is a vector of regressors, B € R™ is a vector
of unknown parameters, and ¥, is i.i.d. random error. The estimation of the parameters in LAD
regression is done by minimizing the sum of the absolute values of the residuals

v, ~x'8|.

The technique is important when the errors might be supposed to have fat tailed distri-
butions. In particular, when the distribution of errors u; is Laplace (i.e., double exponential),
the LAD estimator of B is the maximum likelihood (ML) estimator.

The LAD estimator can be obtained as the solution to linear-programming (LP) problem.
Though computationally cumbersome, the method is feasible. Tukey suggested to compute the
LAD estimates by an iterative weighted least squares (WLS) method instead of LP.

In the framework of time series with unit root properties of the LLAD estimator may be

explored as follows. Suppose {y,} is a univariate AR(1) process with unit root without drift,

- n
B™” = argmin
gmin )

.v:=y1-1+u:9 (l)
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where yp = 0 and innovations w, are i.i.d. with mean zero and variance o. Let {y,}/_ be an

observed  time series of  length T generated by  the process
(H.
Consider the following AR(1) regressions estimated by the LAD conditional on y,:

ytzmr—l+uf9 (2)

yl=a+mf-—l+ui“ (3)

Mark them as Case 1 and Case 2, respectively, as in Hamilton {1994, Ch. 17). Then
under the null hypothesis that o= 1 in Case 1 and (&, p) = (0, 1) in Case 2, the limiting distri-
butions of the nonstudentized unit root statistics T{5*” ~ 1) are given in Theorem 1.
THEOREM 1 Let time series {y,} is generated by (1). Define also y(u)= sgn{u). Then for the
regression specification (2) estimated by LAD, as T —»

| [0+ olal -2, (W 0)

T ~LAD -1 ___d_) 1 (4)
NGO ol [ ar
For the regression specification (3) estimated by LAD, as T — o«
g i)ty LT (O C) ol 03 ) [ O )
2/F )

o [, () dr

where W\(r) and Wi(r) are standard Brownian motions, W ,(r)=W,(r)- IW, (r)dr is a de-

meaned Brownian motion, &} =Varlu}, ol =Varly(w,)}, o,, =Coviu, .wlu, )}, ) and

F(-) are the density and distribution functions of w, respectively, and the symbol —> de-
notes convergence in distribution.

Proof follows immediately from Theorem 3.3, Corollary 3.2, and Remark 5.2 of Koen-
ker and Xiao (2002). Thus, the details are omitted.

Now assume that the distribution of innovations u, is Laplace with the density

flu)= %/Iexp(* A‘u[), where A is a parameter, such that the L.AD estimator is also the ML es-
timator. Then noting that Varfy(u )} =1, Coviu,,w(u,)}=QVar{u,})*, and

SF @)= £0)= (262", Corollary 1 results as a by-product of Theorem 1.

COROLLARY 1 Let time series {y,} is generated by (1) where u, ~ Laplace(2). Then for the re-
gression specification (2) estimated by LAD, as T ~» «

Hp e 1)t {70, )+ [ ehw, )
; 2 W ar

(6)
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For the regression specification (3) estimated by LAD, as T — «
(i 1)z [w,@)aw,(r)+ [_W.!(r)dwz(r)'
[, 0 F

3. Empirical distribution of test statistics

An important point is that the asymptotic distributions of the test statistics given by (6)
and (7) do not depend on any nuisance parameters. Therefore, a priori knowledge about a pa-
rameter of the distribution is not required for a unit root test.

(N

Sample Probability that T(5™° —1} is less than entry

size, 7~ 000 0025 005 __ 010 __ 090 095 0975 0.9
Case 1

50 -1141 -865 661 -465 088 124 160  2.08

100 ~11.43  -8.67 —6.64 —4.68 0.84 1.18 1.50 1.93
250 -11.47 871 -6.68 -4.72 0.82 1.15 1.45 1.84
500 ~11.48 -8.73 -6.70 -4.74 0.82 1.13 1.43 1.81

o) -11.50 -8.74 -6.72 —4.76 0.81 1.12 1.41 1.79
Case 2
50 -16.76 1363 -11.25 -8.86 -0.32 0.29 0.82 1.49

100 -1660 1349 -11.15 -8.80 041 0.18 0.67 1.27
250 -16.46 1340 -11.10 -8.79 047 0.10 0.57 1.13
500 -16.40 -1337 1108 -8.79 -0.50 0.07 0.54 1.08
®© -1635 -1334 -11.07 -8.79 —0.52 0.04 0.50 1.03

Table I Critical values for the unit root test based on LAD estimates

Table | contains percentiles for the null distributions of the nonstudentized unit root
statistics created using MacKinnon’s (2000) response surfaces technique. Following
MacKinnon, the test statistics for 22 various series length 7 ranging from 20 to 1200 were
generated by Monte Carlo simulation. For every sample size 100 experiments were performed,
each with 100,000 replications. In order to simplify the computational issues, Tukey's proce-
dure was adopted.

4. Empirical power of tests

Table 2 gives information on the power of the tests for sample size 7= 100 obtained
through series of Monte Carlo sampling experiments, each with 10,000 replications.

Distri- p=07 p=0.8 p=09 p=0.95 p=10
bution a=0 o=.5 a=1 o=0 =5 o=l =0 =5 o=l =0 =5 a=1 a=0 a=.5 a=l
Test statistics T(ﬁo“s - l), Case | of the Dickey-Fuller unit root test

Laplace 1.00 0.93 0.02 1.00 0.24 0.00 0.76 0.00 0.00 0.31 0.01 0.00 0.65 0.00 0.00
Cauchy 1.00 1.00 1.00 1.00 1.00 0.99 0.84 0.77 0.64 0.19 0.16 0.13 0.03 0.03 0.02
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(2) 1.00
H4) 1.00
ey 1.00
S§(1.2) 1.00
S(1.6) 1.00
Normai 1.00

Laplace 1.00
Cauchy 1.00
K2) 1.00
t(4) 1.00
K6) 1.00
S(1.2) 1.00
S(t.6) 1.00
Normal 1.00

1.00
1.00
-0.99
1.00
1.00
0.95

0.94
1.00
1.00
0.99
0.97
1.00
1.00
0.91

0.94
0.41
0.17
1.00
0.94
0.01

0.10
1.00
0.94
0.57
0.40
1.00
0.94
0.18

1.00 0.94 046 0.78 0.31 0.06 0.28 0.06 0.01 0.04
1.00 0.68 0.02 0.77 0.05 0.00 0.31 0.00 0.00 0.05
1.00 0.52 0.00 0.77 0.01 0.00 0.3} 0.00 0.00 0.05
1.00 0.99 0.92 0.82 0.65 0.40 0.23 0.15 0.08 0.04
1.00 0.93 0.44 0.78 0.31 0.07 0.28 0.06 0.01 0.05
1.00 0.24 0.00 0.76 0.00 0.00 0.31 0.00 0.00 0.05

Test statistics T{5™*® - 1), Case 1 of the LAD unit root test

0.01 0.00
0.04 0.04

1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.99

0.37
1.00
0.97
0.78
0.65
1.00
0.96
0.45

0.00
1.00
0.53
0.05
0.02
0.96
0.55
0.01

0.89
1.00
0.93
0.85
0.82
0.98
0.89
0.79

0.00 0.00
0.96 0.76
0.35 0.03
0.06 0.00
0.04 0.00
0.82 043
0.39 0.07
0.02 0.00

0.34
0.04
0.28
0.39
0.41
0.13
0.31
0.44

0.03
0.00
0.00
0.07
0.04
0.00

0.00
0.00
0.00
0.02
0.00
0.00

0.04
0.00
0.02
0.05
0.07
0.00
0.03
0.09

0.01
0.00
0.00
0.00
0.0}
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00

.00

0.01
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Laplace 1.00
Cauchy 1.00
K2 1.00
{4) 1.00
{6) 1.00
S(1.2) 1.00
S(1.6) 1.00
Normal 1.00

Laplace 1.00
Cauchy 1.00
K2) 1.00
{4) 1.00
t6) 1.00
S(1.2) 1.00
S(1.6) 1.00
Normal 1.00

Test statistics T(5%° 1), Case 2 of the Dickey-Fuller unit root test

1.00
1.60
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.96
0.98
0.97
0.96
0.95
0.98
0.97
0.95

0.96
0.98
0.97
0.96
0.95
0.98
0.96
0.96

0.96
0.98
0.97
0.96
0.96
0.98
0.97
0.96

0.47
0.35
0.44
047
0.47
0.39
0.44
0.47

0.42 0.31
0.35 0.34
0.43 0.39
0.44 037
0.43 035
0.38 0.38
0.43 0.40
0.42 0.31

0.20
0.10
0.16
0.19
0.19
0.12
0.16
0.19

0.06
0.10
0.13
0.11
0.09
0.12
0.12
0.06

0.00
0.09
0.07
0.02
0.01
0.10
0.07
0.00

0.05
0.05
0.05
0.05
0.05
0.06
0.05
0.05

Test statistics T(;) M _ 1) , Case 2 of the LAD unit root test

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.99
1.00
1.00
0.98
0.97
1.00
0.99
0.96

0.99
1.00
1.00
0.98
0.97
1.00
0.99
0.96

0.99
1.00
1.00
0.99
0.98
1.00
0.99
0.96

0.56
0.14
0.49
0.59
0.62
0.29
0.51
0.63

0.53 047
0.14 0.14
0.48 0.46
0.58 0.54
0.59 0.55
029 0.29
0.50 048
0.60 0.54

0.18
0.00
0.10
0.23
0.28
0.02
0.15
0.34

0.07
0.00
0.07
0.15
0.17
0.02
0.11
0.18

0.01
0.00
0.03
0.04
0.04
0.01
0.06
0.03

0.04
0.00
0.01
0.05
0.07
0.00
0.03
0.11

0.00
0.05
0.01
0.00
0.00
0.00
0.01
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.03
0.00
0.00
0.00
0.02
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Table 2 Empirical Power and Size of the unit root tests of nominal size 0.05, T = 100

Notes: #(-) states for Student’s # distribution with degrees of freedom df given in paren-
theses, §(-) states for stable Paretian distribution with a characteristic exponent alphg in paren-

theses.

The data were generated from the model y, = @ + gy, |, +u, with a taking values 0, 0.5, and 1.

When p= |, y, is a unit root process and the empirical rejection rate gives the empirical size of
the tests. For the choice of alternatives, AR(1) with o= 0.7, 0.8, 0.9, 0.95 were considered.

For Case 1 when a = 0 the LAD unit root test is slightly more powerful for all distribu-



tions except Cauchy and stable law with alpha = 1.2, where p=0.95. There is little loss in ac-
curacy with respect to the size of the test. However, the Dickey-Fuller test reports very accu-
rate size. :
For Case 2 when a0 the LAD test again shows higher power than conventional
Dickey-Fuller test in all cases except distributions with extremely heavy tails such as Cauchy
and stable law with alpha = 1.2 where p= 0.90. For p=0.95 both the Dickey-Fuller and the
LAD test have little power. Thus, the predicted superiority of the LAD unit root test in the
presence of fat tailed innovations is again confirmed.

5. Conclusions

The technique presented gives a test of a unit root without drift in univariate time se-
ries against stationary altemative when distribution of innovations is fat tailed. Though the dis-
tribution theory underlying this procedure is asymptotic, the critical values tabulated via ex-
tensive simulation for finite samples are provided.

The following general conclusion can be drawn from the Monte Carlo results: (1) the
proposed LAD unit root test has higher power than the Dickey-Fuller test in the presence of fat
tailed innovations, except distributions with extremely heavy tails such as Cauchy; (2) the
LAD test has little size distortion in Case 1 and is conservative in Case 2. The puzzling resuit
is that the LAD test demonstrates better performance even in the presence of Gaussian innova-
tions.

The empirical power study suggests that the proposed LAD unit root test should be
preferred to the conventional Dickey-Fuller test when distribution of innovations is moderate
fat tailed.
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