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Abstract

It is shown that, under the Wentzel-Kramers-Brillouin approximation conditions, using the

Foldy-Wouthuysen representation allows the problem of finding a classical limit of relativistic quan-

tum mechanical equations to be reduced to the replacement of operators in the Hamiltonian and

quantum mechanical equations of motion by the respective classical quantities.
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The Foldy-Wouthuysen (FW) representation [1] possesses unique features that make it

special in quantum mechanics. Even for relativistic particles in the external field, the oper-

ators in this representation are completely analogous to the respective operators of nonrela-

tivistic quantum mechanics. In particular, the operators of position [2] and momentum are

r and p = −i~∇, while that of polarization for half-spin particles is expressed by the Dirac

matrix Π. In other representations these operators are given by much more awkward for-

mulas (see [1, 3]). The simple and well-defined form of operators corresponding to classical

observables is a major advantage of FW representation. Note that in this representation the

Hamiltonian and all operators are diagonal in two spinors (block-diagonal). The usage of

the FW representation eliminates the chance that ambiguities will occur while solving the

problem of finding a classical limit of relativistic quantum mechanics [1, 4].

In the nonrelativistic case, a transition to the quasiclassical approximation is relatively

easily done using Wentzel-Kramers-Brillouin method (WKB). It can be applied when a de

Broglie wavelength is smaller than the characteristic size of the inhomogeneity region of the

external field l:

λ ≪ l. (1)

For a one-dimensional problem (motion along x axis only) from (1) it follows that the

following inequality holds:
∣

∣

∣

∣

dλ

dx

∣

∣

∣

∣

≪ 1. (2)

It is also convenient to use the WKB method in the analysis of relativistic quantum

mechanical equations. However, in this case it needs to be modified. Like in nonrelativistic

quantum mechanics, a classical limit is reached in the zero-order WKB approximation in ~.

If the FW representation is used, a transition to the quasiclassical approximation is done in

the same way as in nonrelativistic quantum mechanics. In the relativistic case, in order to

be able to use the WKB method, conditions (1) and (2) must also be satisfied.

To simplify the analysis, let us consider the case of one-dimensional motion. If no spin

effects are taken into account, then the equation for relativistic Hamiltonian in the FW

representation can be written as follows:

i~
∂Ψ

∂t
= HΨ, H =

√

m2c4 + c2p2 + V(x,p) + U(x). (3)

This form has, in particular, an equation for scalar particles in the electromagnetic field (see

[5]). Since the operators py, pz commute with the Hamiltonian and have definite values, the
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operator H can be represented in the form

i~
∂Ψ

∂t
= HΨ, H =

√

m2c4 + c2p2x + V (x, px) + U(x). (4)

For stationary states, a usual form for the wave function can be used (see [6, 7]):

Ψ = exp

(

−
i

~
Et

)

Φ(x), Φ(x) = exp

(

i

~
S

)

, (5)

where E is the total energy of a particle. The function S can formally be expanded into a

series in powers of the Planck constant:

S = S0 +
~

i
S1 +

(

~

i

)2

S2 + . . . . (6)

When substituting the wave function into the initial equation, we limit ourselves by the

terms of zero-order approximation. In the latter approximation, the commutators of x and

px operators proportional to ~ can be neglected. Since

p2Ψ = (S′2
− i~S′′)Ψ, (7)

ignoring the quantities of the first and higher orders in ~, we find

√

m2c4 + c2p2x + V (x, px)Ψ =

√

m2c4 + c2S′2 + V (x,S′)Ψ.

Thus, the terms of zeroth order in the Planck constant satisfy the following equation:

E =

√

m2c4 + c2S′2 + V (x,S′) + U(x), (8)

which defines an implicit function S
′ of x. It is clear that the quantity S

′ is a classical

generalized momentum of a particle P(x). Therefore,

S =

∫

P(x)dx. (9)

Thus, S is a time-independent part of the action, while, according to the initial equation

(4), the total action of a particle is found to be

S = −Et +S = −Et +

∫

P(x)dx. (10)

Formula (10) is completely consistent with the classical theory and coincides with the

analogous one deduced for the WKB approximation in nonrelativistic quantum mechanics [6,
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7]. Thus, while using the FW representation in relativistic quantum mechanics, a transition

to the classical limit corresponds to the zero-order WKB approximation in ~. As follows

from (4),(8)–(10), this can be done by replacing the operators in the Hamiltonian by the

respective classical quantities.

It is easy to show that such a replacement can be carried out in equations of motion as

well. Any quantum mechanical Hamiltonian is an operator function of generalized momenta

pi and corresponding coordinates xi. By neglecting the terms proportional to ~, we may

not take into account the noncommutativity of operators of dynamical variables and write

a total time derivative of the Hamiltonian in the form

dH

dt
=

∂H

∂t
+

∂H

∂pi

dpi
dt

+
∂H

∂xi

dxi

dt
.

Since
dH

dt
=

∂H

∂t
,

then, in zero-order approximation in ~, the operator equations of motion can be represented

in a form similar to classical Hamilton equations:

dxi

dt
=

∂H

∂pi
,

dpi
dt

= −
∂H

∂xi
. (11)

The possibility of replacing the operators in the Hamiltonian by respective classical quan-

tities according to (11) leads to that of the same replacement in the operator equations of

motion.

There are some peculiarities in applying the WKB method in gravitation theory [8].

However, when using the Hamiltonian approach (see [9–12]), the problem of transiting to

the classical limit is simplified and reduced to that considered above. The general form of the

classical Hamiltonian of a spinless particle in arbitrary electromagnetic and gravitation fields

is determined by Eq. (2.5) given in [13]. It was shown in [12] that, according to the results

obtained in [14] and in order to describe particles with spin, it should be complemented by

the term s ·Ω proportional to the angular velocity of spin rotation Ω.

The same term is added to the spinless part of the Hamiltonian also to describe spin

effects in electromagnetic and weak interactions. Since the Hamiltonian is given in the

FW representation, only the upper spinor can be used. In this case the operator s is

expressed through the spin matrices for particles with respective spin. For particles with

spin s > 1/2, the operator H may include the products of spin matrices. After carrying out
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a transition to the classical limit described above, the Hamiltonian of particles with spin

contains generalized momenta corresponding coordinates and spin matrices (including their

products). In this case, to find spin dynamics, it is very convenient to use the method based

on the equation for the matrix Hamiltonian, often called the method of spin amplitudes (see

[15] and references therein). A transition to the classical limit is reduced to averaging the

spin matrices and their products over amplitude spin functions. Such averaging leads to the

introduction of polarization vector P and tensor Pij, given by the equations (see [15, 16])

Pi =
< si >

S
, Pij =

3 < sisj + sjsi > −2S(S + 1)δij
2S(2S − 1)

, i, j = x, y, z. (12)

Here si indicates spin matrices and S is a spin quantum number.

It should be taken into account that, in relativistic quantum mechanics, like in nonrel-

ativistic quantum mechanics (see [7]), there are some limitations to the use of this WKB

method. The smallness of the discarded term in (7), that contains a higher derivative not

always guarantees the smallness of its contribution to the solution for S(x). This situation

can occur when the field extends to distances greater than the characteristic length l, at

which it experiences a noticeable change. A quasiclassical approximation turns then out to

be inapplicable in tracing the behavior of the wave function at large distances [7].

Thus, when the conditions of the WKB approximation are satisfied, the usage of the FW

representation in most cases allows one to reduce the problem of finding a classical limit of

relativistic quantum mechanical equations to the replacement of operators in the Hamilto-

nian and quantum mechanical equations of motion by the respective classical quantities.
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