
Given a number ε ≥ 0, denote

Er {Ptb (f, x̄, ε)}(x̄) := inf
g∈Ptb (f,x̄,ε)

Er g(x̄).

This number characterizes the error bound property for the whole family
of convex ε-perturbations of f near x̄. Obviously, Er {Ptb (f, x̄, ε)}(x̄) ≤
Er f(x̄).

Corollary 2. The following properties are equivalent:

(i) Er {Ptb (f, x̄, ε)}(x̄) > 0 for some ε > 0;
(ii) 0 ̸∈ bd ∂f(x̄).

For a detailed study of stability of local and global error bounds for
convex functions and convex semi-infinite constraint systems of the form

ft(x) ≤ 0 for all t ∈ T,

where T is a compact Hausdorff space, ft : X → R, t ∈ T, are given
continuous convex functions such that t 7→ ft(x) is continuous on T for
each x ∈ X, we refer the reader to [1, 2].
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1. Ngai H.V., Kruger A.Y., Théra M. Stability of error bounds for semi-infinite
convex constraint systems // SIAM J. Optim. 2010. V. 20. No. 4. P. 2080–2096.
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Scientific-technical progress, in particular, the widespread use of
microprocessors in industry, subjects the development of new control and
observation systems and the support of existing ones to new, higher
requirements related to the necessity of a more adequate description of
these systems and the use of their specific properties, which often leads to
hybrid dynamical systems.
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However, note that there is no common viewpoint to the notion of
"hybrid systems".

From our viewpoint, being hybrid means, in general, being
inhomogeneous in the nature of the considered process or in its
investigation methods. The notion "hybrid systems" can be used for
systems that describe processes or objects with essentially distinct
characteristics, for example, containing continuous and discrete variables
(signals) in the basic dynamics, deterministic and random variables or
inputs, and so on, which, in the end, defines the character (nature) of
hybrid systems.

In the lecture, we consider differential-algebraic time-delay (DAD)
systems to which, in particular, some standard types of discrete-continuous
and systems with retarded argument of neutral type can be reduced. Such
systems can be qualified as hybrid difference-differential systems or quite
regular DAD systems which, in turn, a special case of descriptor (singular,
implicit) systems with after-effect.

We deal with linear DAD systems consisting of differential and difference
equations. We study the stability of solutions of such systems and derive
necessary and sufficient conditions for their asymptotic and exponential
stability. In the scalar case, these conditions are refined and expressed via
the original coefficients of the system in parametric form, which permits
one to keep track of how the perturbations in the coefficients affect the
solutions and to find the limiting value of the delay for which stability is
preserved.

A determining equation system is introduced and a number of
algebraic properties of the determining equation solutions is established, in
particular, the well-known Cayley-Hamilton matrix theorem is generalized
to the solutions of determining equation. As a result, an effective
parametric reachability and observability rank criteria are given.

We pay attention to the simplest DAD control and observation system
of normal form:

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t), (1)

x2(t) = A21x1(t) + A22x2(t− h) + B2u(t), t ≥ 0, (2)

with the initial conditions

x1(0) = x10 ∈ Rn1, x2(τ) = ψ(τ), τ ∈ [−h, 0), (3)

and the output
y(t) = C1x1(t) + C2x2(t), t ≥ 0, (4)
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where A11 ∈ Rn1×n1, A12 ∈ Rn1×n2, B1 ∈ Rn1×r, A21 ∈ Rn2×n1, A22 ∈
Rn2×n2, B2 ∈ Rn2×r, C1 ∈ Rm×n1, C2 ∈ Rm×n2,ψ ∈ PC([−h, 0], Rn2); the
external action u(t) for t ≥ 0 is a piecewise continuous r-vector function
(admissible control); the symbol PC(J,M) denotes the set of piecewise
continuous M-valued functions in the interval J .

We regard an absolutely continuous function x1(·) and a piecewise
continuous function x2(·) as a solution of System (1)–(3) if it satisfies the
initial conditions (3), it satisfies the equation (2) for t ≥ 0 and Equation
(1) almost everywhere (a. e.) for t ≥ 0. If Equation (1) is satisfied for
all t ≥ 0 with right-hand value at t = 0 then we consider the solution
x1(·), x2(·) as a strong solution of the system.

Computing the solution x1(t) = x1(t, x10, ψ, u), x2(t) = x2(t, x10, ψ, u),
t ≥ 0, of the system (1)–(3) by "step by step" one can prove that it exists,
is unique, and its growth rate does not exceed an exponential one for any
admissible control having no higher than the exponential rate of growth.
This permits to apply the Laplace transform to the system.

Introduce matrix-valued functions X∗
i1(·), X

∗
i2(·), and Z∗

i (·) as the
solutions of the following adjoint system:

Ẋ∗
i1(t) = X∗

i1(t)A11 +X∗
i2(t)A21, t ∈ (jh, (j + 1)h), j = 0, 1, ...; (5)

X∗
i2(t) = X∗

i1(t)A12 +X∗
i2(t− h)A22, t ≥ 0, (6)

X∗
i1(kh+ 0)−X∗

i1(kh− 0) = Z∗
i [k]A21, (7)

Z∗
i [k] = Z∗

i [k − 1]A22, k = 1, ...; (8)

X∗
i2(τ) = 0, τ < 0; i = 1, 2; (9)

with initial conditions of the form:

X∗
11(0) = X∗

11(−0) = X∗
11(+0) = In1

, Z∗
1 [0] = 0; (10)

X∗
21(0) = X∗

21(−0) = A21, Z
∗
2 [0] = In2

. (11)

Here and throughout the following, the symbol Ik stands for the identity
k by k matrix.

The matrix-functions X∗
i1(t), t ≤ 0, i = 1, 2; are assumed to be left

continuous. It is not difficult to check that X∗
11(t) and X∗

12(t) − X∗
12(t −

h)A22 are continuous for t ≥ 0.
Then the solution x1(t) = x1(t, x10, ψ), x2(t) = x2(t, x10, ψ) of System

(1), (2), (3) can be computed by the formulas:

x1(t) = X∗
11(t)x10 +

h∫

0

X∗
12(t− τ)A22ψ(τ − h)dτ+ (12)
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+

t∫

0

(X∗
11(t− τ)B1 +X∗

12(t− τ)B2)u(τ)dτ,

x2(t) = X∗
21(t+0)x10+

h∫

0

X∗
22(t−τ)A22ψ(τ−h)dτ+Z

∗
2 [Tt]A22ψ(t−Tth−h)+

+

t∫

0

(X∗
21(t− τ)B1 +X∗

22(t− τ)B2)u(τ)dτ +

Tt∑
k=0

Z∗
2 [k]B2u(t− kh), (13)

where Tt = [ t
h
] is the integer part of t

h
that can be given in the universal

form as Variation-of-Constants Formula (generalized Couchy formula):

xi(t) = X∗
i1(t+0)x10+

h∫

0

X∗
i2(t−τ)A22ψ(τ−h)dτ+Z

∗
i [Tt]A22ψ(t−Tth−h)+

+

t∫

0

(X∗
i1(t− τ)B1 +X∗

i2(t− τ)B2)u(τ)dτ +

Tt∑
k=0

Z∗
i [k]B2u(kh),

t > 0, i = 1, 2. (14)

Using the formula (14), we obtain effective parametric criteria for
stability, reachability and observability of the considered DAD system.
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The use of functional-differential equations while modeling the
population dynamics processes has begun apparently with V. Volterra’s
papers. At first differential equations with one concentrated delay
were considered. Then there appeared papers on several delays, with
variable, integro-differential equations. Lately, partial equations with delay
argument are considered.

In the paper we consider mathematical model of dynamics described by
partial differential equation with one constant delay

ut(x, t) = a21uxx(x, t) + a22uxx(x, t− τ)+
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