Assumptions 1, 2 are relaxed. Thanks to their constructive nature, the
conditions obtained can be easily verified. Since the Assumptions assumed
in this paper are weaker than the known from literature constraint
qualifications for SIP problems, the new optimality conditions can be
applied for a more general case of SIP problems.
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The feedback control problem for a nonlinear dynamic system under lack
of information on disturbances is considered. The problem on minmax-
maxmin of ensured result for a given positional quality index is formalized
into an antagonistic two-player differential game in the framework of
the concept of the Sverdlovsk (Ekaterinburg) school on the theory of
control and differential games. The problem is solved in the class of mixed
positional strategies. The existence of a solution for considered differential
game — of the value of the game and the saddle point — is determined. The
solution of a problem is based on application of the appropriate models-
leaders, the so-called methods of minimax and maximin extremal shift [2]
and the method of upped convex hulls [1]. Although we use probabilistic
mechanisms in formation of control, the final result is guaranteed with
probability arbitrary close to one. Results of the study are applied to
the control model [3] of a mechanical device. It simulates a controller in
the space equipment used for docking and landing of modules. Simulation
outputs are presented.
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1. Error Bounds. Given a function f: X — Ry := RU {400} on a
Banach space X and a point & € X with f(z) = 0, we say that f admits
a (local) error bound at T if there exist reals ¢ > 0 and 6 > 0 such that

cd(z,Sy) < [f(z)]+ forall x € Bs(x),

where Sy := {z € X : f(z) < 0} and the notation oy := max(«,0) is
used, or equivalently

Er f(z) := liminf /() > 0.

z—z, f(2)>0 d(z, S(f))
2. Subdifferential Slopes. From now on, f : X — R, is a proper
lower semicontinuous convex function on a Banach space X and f(Z) < oo.
Recall the definition of the subdifferential of f at Z:

0f(z) = {z" € X*| f(z) — f(Z) > (2", 2 — T), Vo € X}.
The subdifferential slope, boundary subdifferential slope, and strict outer
subdifferential slope of f at T are defined as follows:

[0f (%) =inf{||z"[| | " € Of ()},
[0 1ba(Z) = mf{[lz"]| [ z* € bd O f ()},

1017 (z) = liminf |0f]|(x).
Ar (@) = tmint (o]0
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