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1. Error Bounds. Given a function f : X → R∞ := R ∪ {+∞} on a
Banach space X and a point x̄ ∈ X with f(x̄) = 0, we say that f admits
a (local) error bound at x̄ if there exist reals c > 0 and δ > 0 such that

cd(x, Sf) ≤ [f(x)]+ for all x ∈ Bδ(x̄),

where Sf := {x ∈ X : f(x) ≤ 0} and the notation α+ := max(α, 0) is
used, or equivalently

Er f(x̄) := lim inf
x→x̄, f(x)>0

f(x)

d(x, S(f))
> 0.

2. Subdifferential Slopes. From now on, f : X → R∞ is a proper
lower semicontinuous convex function on a Banach space X and f(x̄) < ∞.
Recall the definition of the subdifferential of f at x̄:

∂f(x̄) =
{

x∗ ∈ X∗| f(x)− f(x̄) ≥ ⟨x∗, x− x̄⟩, ∀x ∈ X
}

.

The subdifferential slope, boundary subdifferential slope, and strict outer
subdifferential slope of f at x̄ are defined as follows:

|∂f |(x̄) = inf{∥x∗∥ | x∗ ∈ ∂f(x̄)},

|∂f |bd(x̄) = inf{∥x∗∥ | x∗ ∈ bd ∂f(x̄)},

|∂f |>(x̄) = lim inf
x→x̄, f(x)↓f(x̄)

|∂f |(x).
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Proposition 1. |∂f |(x̄) ≤ |∂f |bd(x̄) ≤ |∂f |>(x̄).

All inequalities in the above proposition can be strict.

3. Stability of Local Error Bounds. Here we assume that f(x̄) = 0.

Theorem 1. Er f(x̄) = |∂f |>(x̄).

Corollary 1. Consider the following properties:
(i) f admits an error bound at x̄;

(ii) |∂f |>(x̄) > 0; (iii) |∂f |bd(x̄) > 0; (iv) 0 ̸∈ ∂f(x̄); (v) 0 ∈
int ∂f(x̄).

Each of the properties (ii)–(v) is sufficient for the error bound property
(i). Moreover,
[(iv) or (v)] ⇔ (iii) ⇒ (ii) ⇔ (i).

Definition 1. Let ε ≥ 0. We say that a convex and lower
semicontinuous function g : X → R∞ is an ε-perturbation of f near
x̄ and write g ∈ Ptb (f, x̄, ε) if g(x̄) = f(x̄) and

lim sup
x→x̄

|g(x)− f(x)|

∥x− x̄∥
≤ ε

with the convention ∞−∞ = 0.

Proposition 2. If g ∈ Ptb (f, x̄, ε), then f ∈ Ptb (g, x̄, ε), ∂g(x̄) ⊆
∂f(x̄) + εB∗, |∂g|(x̄) ≥ |∂f |(x̄)− ε, and |∂g|bd(x̄) ≥ |∂f |bd(x̄)− ε.

The next theorem shows that condition (iii) in Corollary 1 provides a
characterization of the “combined” error bound property for the family of
ε-perturbations of f near x̄.

Theorem 2. Let ε > 0. The following assertions hold true:

(i) Er g(x̄) ≥ |∂f |bd(x̄)− ε for any g ∈ Ptb (f, x̄, ε);

(ii) if 0 ∈ bd ∂f(x̄), then Er g(x̄) ≤ ε where

g(x) := f(x) + ε∥x− x̄∥, x ∈ X;

(iii) if dimX < ∞ and 0 ∈ bd ∂f(x̄), then there exists an x∗ ∈ εB∗

such that Er g(x̄) ≤ ε where

g(x) := f(x) + ⟨x∗, x− x̄⟩, x ∈ X.
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Given a number ε ≥ 0, denote

Er {Ptb (f, x̄, ε)}(x̄) := inf
g∈Ptb (f,x̄,ε)

Er g(x̄).

This number characterizes the error bound property for the whole family
of convex ε-perturbations of f near x̄. Obviously, Er {Ptb (f, x̄, ε)}(x̄) ≤
Er f(x̄).

Corollary 2. The following properties are equivalent:

(i) Er {Ptb (f, x̄, ε)}(x̄) > 0 for some ε > 0;
(ii) 0 ̸∈ bd ∂f(x̄).

For a detailed study of stability of local and global error bounds for
convex functions and convex semi-infinite constraint systems of the form

ft(x) ≤ 0 for all t ∈ T,

where T is a compact Hausdorff space, ft : X → R, t ∈ T, are given
continuous convex functions such that t 7→ ft(x) is continuous on T for
each x ∈ X, we refer the reader to [1, 2].
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Scientific-technical progress, in particular, the widespread use of
microprocessors in industry, subjects the development of new control and
observation systems and the support of existing ones to new, higher
requirements related to the necessity of a more adequate description of
these systems and the use of their specific properties, which often leads to
hybrid dynamical systems.
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