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The new formulation of the minimum energy control problem for the
positive 2D continuous-discrete linear systems is proposed. Necessary and
sufficient conditions for the reachability of the systems are established.
Conditions for the existence of the solution to the minimum energy
control problem and procedures for computation of an input minimizing
the given performance index are given. Effectiveness of the procedure is
demonstrated on numerical example.

Introduction. A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains forever in the positive
orthant for all nonnegative inputs. An overview of state of the art in
positive theory is given in the monographs [5, 10]. Variety of models having
positive behavior can be found in engineering, economics, social sciences,
biology and medicine, etc..

The positive 2D continuous-discrete linear systems have been introduced
in [14], positive hybrid linear systems in [11] and the positive fractional
2D hybrid systems in [13]. Different methods of solvability of 2D hybrid
linear systems have been discussed in [23] and the solution to singular 2D
hybrids linear systems has been derived in [25]. The realization problem
for positive 2D hybrid systems has been addressed in [15]. Some problems
of dynamics and control of 2D hybrid systems have been considered in
[4, 6]. The problems of stability and robust stability of 2D continuous-
discrete linear systems have been investigated in [1-3, 9, 24-27] and of
positive fractional 2D continuous-discrete linear systems in [12]. Recently
the stability and robust stability of general model and of Roesser type
model of scalar continuous-discrete linear systems have been analyzed by
Bus lowicz in [2, 3]. Stability of continuous-discrete 2D linear systems has
been considered in [17]. The minimum energy control problem for standard
linear systems has been formulated and solved by J. Klamka [19-22] and for
2D linear systems with variable coefficients in [18]. The controllability and
minimum energy control problem of fractional discrete-time linear systems
has been investigated by Klamka in [22]. The minimum energy control of
fractional positive continuous-time linear systems has been addressed in
[7] and for descriptor positive discrete-time linear systems in [8].
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In this paper a new formulation and solution to the minimum energy
control problem for positive 2D continuous-discrete linear systems will be
presented.

The paper is organized as follows. In section 2 necessary and sufficient
conditions for the positivity of 2D continuous-discrete linear systems are
established. The reachability and the problem formulation are given in
section 3. Problem solution and a procedure for solving the minimum
energy control problem are given in section 4. Concluding remarks are
given in section 5.

The following notation will be used: ℜ - the set of real numbers, ℜn×m

- the set of n × m real matrices, ℜn×m
+ - the set of n × m matrices with

nonnegative entries and ℜn
+ = ℜn×1

+ , Mn - the set of n×n Metzler matrices
(real matrices with nonnegative off-diagonal entries), In - the n×n identity
matrix.

1. Positivity of 2D continuous-discrete systems. Consider the 2D
continuous-discrete linear system

ẋ(t, i) = Ax(t, i) + Bu(t, i) (1)

where ẋ(t, i) = ∂x(t,i)
∂t

, x(t, i) ∈ ℜn, u(t, i) ∈ ℜm are the state and input
vectors and A ∈ ℜn×n, B ∈ ℜn×m (n ≥ m) and t ∈ ℜ+ is continuous
variable (usually time) and i ∈ Z+ is discrete variable.

Definition 1. The system (1) is called (internally) positive if x(t, i) ∈
ℜn

+, t ∈ ℜ+, i ∈ Z+ for any boundary conditions x0i ∈ ℜn
+, xt0 ∈

ℜn
+, ẋt0 ∈ ℜn

+ and all inputs u(t, i) ∈ ℜm
+ , t ∈ ℜ+, i ∈ Z+.

Theorem 1. The system (1) is positive if and only if

A ∈ Mn and B ∈ ℜn×m
+ . (2)

Proof. Necessity. Let u(t, i) = 0, t ≥ 0 and x(0, i) = ei (i-th (i =
1, ..., n) column of the identity matrix In). The trajectory does not live
the orthant ℜn

+ only if the derivative ẋ(0, i) = Aei ≥ 0, what implies
aij ≥ 0, i ̸= j. Therefore, the matrix A has to be the Metzler matrix. For
the same reasons for x(0, i) = 0 we have ẋ(0, i) = Bu(0, i) ≥ 0, what
implies B ∈ ℜn×m

+ , since u(0, i) ∈ ℜm
+ may be arbitrary for i ∈ Z+.

Sufficiency. The solution of the equation (1) is given by

x(t, i) = eAtx(0, i) +

t
∫

0

eA(t−τ)B(τ, i)dτ. (3)
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It is well-known [10, 16] that eAt ∈ ℜn×n
+ , t ∈ ℜ+ if and only if A ∈ Mn.

From (3) it follows that if the conditions (2) are met and x(0, i) ∈ ℜn
+,

u(t, i) ∈ ℜm
+ , t ∈ ℜ+, i ∈ Z+ then x(t, i) ∈ ℜn

+, t ∈ ℜ+, i ∈ Z+. Hence by
Definition 1 the system (1) is positive. �

2. Reachability and problem formulation. Consider the 2D
continuous-discrete linear system (1).

Definition 2. The positive system (1) is called reachable in segment
of line {[tf , 0], [tf , q]} if for any given final state vector xf ∈ ℜn there
exists an input u(t, i) ∈ ℜm

+ , 0 ≤ t ≤ tf , 0 ≤ i ≤ q that steers the
state vector x(t, i) of the system from x(0, i) = 0, i = 0,1,. . . , q, to
xf = x(tf , 0) + x(tf , 1) + ... + x(tf , q).

Theorem 2. The positive system (1) is reachable on the segment of
line {[tf , 0], [tf , q]} if and only if the matrix A ∈ Mn is diagonal and the
matrix B ∈ ℜn×m

+ is monomial.

Proof. Using (3) for t = tf , i = 0,1,. . . , q and x(0, i) = 0, i = 0,1,. . . ,
q we obtain

xf = x(tf , 0) + x(tf , 1) + ... + x(tf , q) =

tf
∫

0

eA(tf−τ)B̄ū(τ)dτ (4)

where
B̄ = [ B B ... B ] ∈ ℜn×m̄

+ ,

ū(τ) =









u(τ, 0)
u(τ, 1)
...
u(τ, q)









∈ ℜm̄
+ , m̄ = n(q + 1).

(5)

It is well-known [10, 16] that if A ∈ Mn is diagonal then eAt ∈ ℜn×n
+ is

also diagonal and if B ∈ ℜn×m
+ is monomial then B̄B̄T ∈ ℜn×n

+ is also
monomial. In this case the matrix

R(tf , q) =

tf
∫

0

eAτ B̄B̄TeA
T τdτ ∈ ℜn×n

+ (6)

is also monomial and R−1(tf , q) ∈ ℜn×n
+ .

The input

û(t) = B̄TeA
T (tf−t)R−1(tf , q)xf (7)
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steers the state of the system (1) from x(0, i) = 0, i = 0,1,. . . , q to the
segment of line {[tf , 0], [tf , q]}. Using (5), (6) and (3) we obtain

x(tf , q) =
tf
∫

0

eA(tf−τ)B̄û(τ)dτ =
tf
∫

0

eA(tf−τ)B̄B̄TeA
T (tf−τ)dτR−1(tf , q)xf

=
tf
∫

0

eAτ B̄B̄TeA
T τdτR−1(tf , q)xf = xf .

(8)
Necessity. From the Cayley-Hamilton theorem we have

eAt =
n−1
∑

k=0

ck(t)A
k (9)

where ck(t), k = 0,1,. . . , n − 1 are some nonzero functions of time
depending on the matrix A. Substitution of (9) into

tf
∫

0

eA(tf−τ)B̄ū(τ)dτ (10)

yields

xf = [ B̄ AB̄ ... An−1B̄ ]









v0(tf)
v1(tf)
...
vn−1(tf)









(11)

where

vk(tf) =

tf
∫

0

ck(τ)ū(tf − τ)dτ , k = 0, 1, . . . , n− 1. (12)

For given xf ∈ ℜn
+ it is possible to compute nonnegative vk(tf), k =

0,1,. . . ,n− 1 if and only if the matrix

[ B AB ... An−1B ] (13)

has n linearly independent monomial columns and this takes place only if
the matrix [A B] contains n linearly independent monomial columns [10,
16].

Note that for nonnegative vk(tf), k = 0,1,. . . , n−1 it is possible to find
a nonnegative input ū(t) ∈ ℜm̄

+ only if the matrix B ∈ ℜn×n
+ is monomial

and the matrix A ∈ Mn is diagonal. �
If the positive system (1) is reachable on the segment of line

{[tf , 0], [tf , q]}, then usually there exists many different inputs ū(τ) ∈ ℜm̄
+
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that steers the state of the system from x(0, i) = 0, i = 0,1,. . . , q to
xf = x(tf , 0) + x(tf , 1) + ... + x(tf , q) ∈ ℜn

+. Among these inputs we
are looking for an input û(t) ∈ ℜm̄

+ for t ∈ [0, tf ] that minimizes the
performance index

I(u) =

tf
∫

0

uT (τ)Qu(τ)dτ (14)

where Q ∈ ℜm̄×m̄
+ is a symmetric positive defined matrix and Q−1 ∈ ℜm̄×m̄

+ .
The minimum energy control problem for can be stated as follows: Given

the matrices A ∈ Mn, B ∈ ℜn×m
+ , Q ∈ ℜm̄×m̄

+ and xf ∈ ℜn
+, find an input

ū(t) ∈ ℜm̄
+ for t ∈ [0, tf ] that steers the state vector of the system from

x(0, i) = 0, i = 0,1,. . . , q to xf = x(tf , 0) + x(tf , 1) + ... + x(tf , q) ∈ ℜn
+

and minimizes the performance index (14).

3. Problem solution. To solve the problem we define the matrix

W = W (tf , Q) =

tf
∫

0

eA(tf−τ)B̄Q−1B̄TeA
T (tf−τ)dτ (15)

where B̄ is defined by (5).
By Theorem 2 the matrix (15) is monomial and W−1 ∈ ℜn×n

+ if and only
if the positive system (1) is reachable at the segment of line {[tf , 0], [tf , q]}.

In this case we may define the input

û(t) = Q−1B̄TeA
T (tf−t)W−1xf fort ∈ [0, tf ]. (16)

Note that û(t) ∈ ℜm̄
+ for t ∈ [0, tf ] if

Q−1 ∈ ℜm̄×m̄
+ and W−1 ∈ ℜn×n

+ . (17)

Theorem 3. Let ū(t) ∈ ℜm̄
+ for t ∈ [0, tf ] be an input that steers

the state of the positive system (1) from x(0, i) = 0, i = 0,1,. . . , q to
xf = x(tf , 0) + x(tf , 1) + ... + x(tf , q) ∈ ℜn

+. Then the input (16) also
steers the state of the system from x(0, i) = 0, i = 0,1,. . . , q to xf =
x(tf , 0) + x(tf , 1) + ... + x(tf , q) ∈ ℜn

+ and minimizes the performance
index (14), i.e. I(û) ≤ I(ū). The minimal value of the performance index
(14) is equal to

I(û) = xTfW
−1xf . (18)

Proof. If the conditions (17) are met then û(t) ∈ ℜm̄
+ for t ∈ [0, tf ]. We

shall show that the input steers the state of the system from x(0, i) = 0,
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i = 0,1,. . . , q to xf ∈ ℜn
+. Substitution of (16) into (4) for t = tf yields

x(tf) =

tf
∫

0

eA(tf−τ)B̄û(τ)dτ =

tf
∫

0

eA(tf−τ)B̄Q−1B̄TeA
T (tf−τ)dτW−1

f xf = xf

since (15) holds. By assumption the inputs ū(t) and û(t), t ∈ [0, tf ] steers
the state of the system from x(0, i) = 0, i = 0,1,. . . , q to xf ∈ ℜn

+. Hence

xf =

tf
∫

0

eA(tf−τ)B̄ū(τ)dτ =

tf
∫

0

eA(tf−τ)B̄û(τ)dτ (19)

or
tf
∫

0

eA(tf−τ)B̄[ū(τ) − û(τ)]dτ = 0. (20)

By transposition of (20) and postmultiplication by W−1xf we obtain

tf
∫

0

[ū(τ) − û(τ)]T B̄TeA
T (tf−τ)dτW−1xf = 0. (21)

Substitution of (16) into (21) yields

tf
∫

0

[ū(τ) − û(τ)]TQû(τ) = 0 (22)

since
Qû(τ) = B̄TeA

T (tf−τ)W−1xf = xf . (23)

Using (22) it is easy to verify that

tf
∫

0

ū(τ)TQū(τ)dτ = (24)

=

tf
∫

0

û(τ)TQû(τ)dτ +

tf
∫

0

[ū(τ) − û(τ)]TQ[ū(τ) − û(τ)]dτ .

From (24) it follows that I(û) < I(ū) since the second term in the
right-hand side of the inequality is nonnegative.

To find the minimal value of the performance index (14) we substitute
(16) into (14) and we obtain

34



I(û) =

tf
∫

0

ûT (τ)Qû(τ)dτ = (25)

= xTfW
−1

tf
∫

0

eA(tf−τ)B̄Q−1B̄TeA
T (tf−τ)dτW−1xf = xTfW

−1xf

since (15) holds. �
From the above considerations we have the following procedure for

solving the minimum energy control problem.
Procedure 1.

Step 1. Using for example the Sylvester formula compute the matrix eAt.
Step 2. Knowing the matrices A, B, Q, tf and using (15) compute the
matrix W .
Step 3. Using (16) compute û(t).
Step 4. Using (18) compute the minimal value of the performance index
I(û).

Concluding remarks. A new formulation and solution to the minimum
energy control problem have been proposed. New necessary and sufficient
conditions for the positivity of a class of 2D continuous-discrete linear
systems have been established (Theorem 1). A new notion of the
reachability to the segment of line has been introduced and necessary and
sufficient conditions for the reachability have been presented (Theorem
2). Conditions for the existence of the solution to the minimum energy
control problem (Theorem 3) and procedures for computation of an input
minimizing the given performance index have been proposed.

An open problem is an extension of the minimum energy control problem
to standard and positive 2D continuous-discrete linear systems described
by the equation [10, 16]

ẋ(t, i + 1) = A0x(t, i) + A1ẋ(t, i) + A2x(t, i + 1)+

+B0u(t, i) + B1u̇(t, i) + B2u(t, i + 1)

where ẋ(t, i) = ∂x(t,i)
∂t

, x(t, i) ∈ ℜn, u(t, i) ∈ ℜm are the state and input
vectors and Ak ∈ ℜn×n, Bk ∈ ℜn×m, k = 0, 1, 2.

This work was supported under work S/WE/1/11.
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Inroduction. Semi-Infinite Programming (SIP) deals with extremal
problems that involve infinitely many constraints in a finite dimensional
space. Due to the numerous theoretical and practical applications, today
semi-infinite optimization is a topic of a special interest. Since the most
efficient methods for solving optimization problems are usually based on
optimality conditions that permit not only to test the optimality of a given
feasible solution, but also to find the better direction to optimality, the
study of these conditions is essential. Usually the optimality conditions
are formulated under certain assumptions that are called Constraint
Qualifications (CQ) [1, 2]. On the other hand, the optimality conditions
that do not use too strong additional assumptions are of special interest
since they are more universal and have more applications.

1. Problem statement. Consider a convex Semi-Infinite Programming
problem in the form

(P ) : min
x∈Rn

c(x) s.t. f(x, t) ≤ 0 ∀ t ∈ T,

with a finitely representable compact index set T = {t ∈ R
s : gk(t) ≤

0, k ∈ K}, |K| < ∞.
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