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Abstract

We propose a technique on the base of universal predictors for statistical test

construction for randomness testing of binary sequences. The technique allows to

find the asymptotic power of the test. We use the technique to construct the test

on the base of the universal Lempel-Ziv predictor and theoretically find its power

for the model of i.i.d. asymmetric Bernoulli trials under two-staged procedure of

test construction. We perform comparison of the proposed test with Lempel-Ziv

compression test from NIST SP800-22.

1 Introduction

Randomness testing of binary sequences is the topical problem in cryptography. It
arises under true random number generators testing and preliminary analysis of cryp-
tographic algorithms. Therefore, there are many well known statistical test suites for
cryptographic applications: NIST SP 800-22 [1], FIPS 140, AIS 31, and other. The
suites usually include many tests in order to detect different alternative hypotheses,
because construction of a single test for a single “broad” alternative hypothesis, which
includes rich family of probabilistic models, in most cases is impossible.

We refine a technique [2] on the base of universal predictors for statistical test
construction. This technique allows to construct a statistical test for randomness using
any predictor and detect broad alternative hypothesis, for which predictor is universal.

2 Randomness testing using a universal predictor

Let Xn
1 = X1, X2, . . . , Xn be a sequence of binary random variables (Xi ∈ A = {0, 1})

described by a set of conditional probabilities {P {Xt+1 | X t
1; θ}} from class M com-

pounded by probabilistic models with parameter θ ∈ Θ. If θ is known then maximum-
likelyhood predictor (ML-predictor) predicts the (t+1)-th outcome X̂∗

t+1 given previous
t outcomes according to the most probable value for the given θ and has the minimal
prediction error π∗

t (X
t
1; θ) = P{X̂∗

t+1 6= Xt+1 | X t
1; θ}:

X̂∗

t+1 =

{

0, P {Xt+1 = 0 | X t
1; θ} > P {Xt+1 = 1 | X t

1; θ} ,

1, otherwise,

π∗

t (X
t
1; θ) = P

{

X̂∗

t+1 6= Xt+1 | X t
1; θ

}

= min
a∈A

P
{

Xt+1 = a | X t
1; θ

}

.
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If θ is unknown a predictor defines estimate θ̂t on the base of X t
1 and uses it to find

X̂t+1. There exist classes M of models with universal predictors, i.e. predictors with
asymptotically same prediction error probability as ML-predictor [3]:

π∗

t (X
t
1; θ) − P{Xt+1 6= arg maxa∈A P{Xt+1 = a | X t

1; θ̂t} | X t
1; θ}

P−−−→
t→∞

0.

Let one sequentially predicts X̂t for Xt, t = 1, 2, . . . and builds a sequence {Yt} of
successful prediction indicators: Yt = I{X̂t = Xt}. Consider the null hypothesis H0

that the sequence Xn
1 is random, i.e. {Xt} are i.i.d. symmetric Bernoulli trials. Clear,

under H0 the indicators {Yt} are also i.i.d. Bernoulli trials with P {Yt = 1} = 0.5.
Consider an alternative

H1 : max
a∈A

P
{

a | X t
1; θ

}

=
1

2
+ εθ;Xt

1
≥ 1

2
, ∃t0, i∗1, . . . , i

∗

t0 : (1)

0 < εθ;i∗
1
,...,i∗

t0
<

1

2
, P {X1 = i∗1, . . . , Xt = i∗t0 ; θ} > 0.

Lemma 1. Let there exists the universal predictor for broad class M compounded by

models described by H1 (1). If the universal for M predictor is used to construct {Yt}
then P {Yt = 1} = 0.5 + εθ;t and there exists t∗ such that εθ;t > 0 for all t ≥ t∗.

Thus, the natural statistical test for H0 has the form:

accept

{

H0, if 2
√

n
(

Sn − 1
2

)

< ∆,

H1, otherwise,
Sn =

1

n

n
∑

t=1

Yt, ∆ = Φ−1(1 − α), (2)

where Φ(·) is the standard normal c.d.f., α is a significance level.

3 Test based on the universal Lempel-Ziv predictor

Let Xn
1 be the sequence of i.i.d. Bernoulli trials with unknown success probability

θ ∈ (0; 1). Consider simple hypothesis H0: θ = 0.5 against complex alternative H1:

H1 : P {Xt = 1} = θ, θ = 0.5 + ε, 0 < |ε| < 0.5. (3)

Let us recall briefly the universal for stationary ergodic Markov chains of finite
order Lempel-Ziv predictor [4] (LZ-predictor). The testing sequence is parsed into
words according to Lempel-Ziv algorithm: new word is added in vocabulary, if it is the
shortest one that has not yet been added. The vocabulary is organized into a binary
tree: adding a word corresponds to adding leaves required to “read” the word from
the tree. “Reading” a word implies parsing from a root to internal node or leaf: if the
value of next letter is “0” one goes to the left from the current node, otherwise one goes
to the right. After adding all words the weight of each leaf is set to 1. The weight of
internal node is defined recursively as the sum of weights of its offsprings. Let path X t

1

be a traverse from the root “in the direction” of X1, then X2 and so on. If at moment
l < t the traversing reaches a leaf, then traversing resets and starts again from the root
“in the direction” of Xl+1.

29



Let a context be defined as the path X t
j where no reset happened. Let NXj ,Xj+1,...,Xt

be a weight of node where path ended. Now the Lempel-Ziv estimators of conditional
probabilities are defined as:

P̂
LZ{Xt+1 = a|X t

1} = NXj ,Xj+1,...,Xt,a/NXj ,Xj+1,...,Xt
. (4)

Note that the estimator (4) is based on frequencies of the words and it may be biased
under insufficient number of observations. We define L as the maximal length of
contexts with frequency NXL

1
≥ K, ∀XL

1 ∈ AL for some given K and truncate the
Lempel-Ziv tree to height L. Note that the weights of nodes in truncated tree remain
unchanged.

We use two-staged procedure for test construction: let Xn
1 be partitioned into two

parts of size m and k respectively. Let us denote the first part by X0
−m+1 and the

second part by Xk
1 . The first part X0

−m+1 is used to build estimates (4). The second
part Xk

1 is used to build the test statistic in the following way. The first prediction is
made from root and corresponds to value on the first level, which weight in the tree is
maximal, then Y1 is built. That is “memoryless” prediction, as the length of context
is equal 0, and it is equivalent to the ML-predictor. Then we move from root in the
direction of X1. Now prediction for X̂2 is made from node, correspondent to X1. It
may be treated as ML-predictor for the first order Markov chain. After predicting XL

we reset to root and build a prediction for XL+1 again using “memoryless” predictor.
We will continue under condition that the Lempel-Ziv tree is calculated on X0

−m+1

and it is fixed. Let k mod (L + 1) = 0 for simplicity. Then all indicators of successful
predictions can be divided into groups:

Sk,m = 1
k

∑k
t=1 Yt = 1

k

∑L
i=0 S(i), S(i) =

∑k/(L+1)−1
t=0 Y1+i+(L+1)t ,

where S(i) is the sum of indicators of successful predictions using context of length
i. Each context s = sl

1 of length l(s) = l specifies the node in the tree, and the
prediction X̂(s) from context s is known for given the weighted Lempel-Ziv tree. Let
p̃(s) be the probability of successful prediction after context s under hypothesis (3):
p̃(s) = ((1 − θ) · I{X̂(s) = 0} + θ · I{X̂(s) = 1}), and C be the set of contexts that will
be used for predictions.

Lemma 2. Under hypothesis (3) statistic S(i), calculated with the use of the given

Lempel-Ziv tree built on X0
−m+1, has the following properties:

E
{

S(i)
}

= kµ(i)/(L + 1), D
{

S(i)
}

= kµ(i)(1 − µ(i))/(L + 1),

µ(i) =
∑

s∈C:l(s)=i

P {s} p̃(s), P {s} = θ
∑

j sj(1 − θ)(i−
∑

j sj).

Theorem 1. Under hypothesis H1 (3) and k → ∞ the power Wk(X
0
−m+1, θ) of test (2),

based on LZ-predictor built on given X0
−m+1, has the following asymptotic expression:

∣

∣

∣

∣

Wk(X
0
−m+1, θ) −

(

1 − Φ

(

∆

2
√

n
√

σ
+

0.5 − µ√
σ

))
∣

∣

∣

∣

→ 0, µ =
1

(L + 1)

L
∑

i=0

µ(i),

σ =
1

k(L + 1)

( L
∑

i=0

µ(i)(1 − µ(i)) + 2
∑

j>i

∑

s∈C:l(s)=j

P {s} p̃(s)
(

I{X̂(si
1) = si+1} − µ(i)

)

)

.
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4 Computation experiment

Let us perform comparison of the proposed test with Lempel-Ziv compression test
from NIST SP800-22. Lempel-Ziv compression test was widely used in cryptographic
applications as a part of NIST SP800-22 test suite. But it is noted in [1] that Lempel-
Ziv compression test lacks theoretical foundation: theoretical mean and variance are
equal to 50171.7 and 33.59 correspondingly, whereas their statistical estimates are equal
to 69586.25 and 70.44 for a sequence of fixed length n = 106.

In order to confirm theoretical results of theorem 1 we perform Monte-Carlo ex-
periments to estimate the power of the test (2) based on LZ-predictor (4). Figure 1
presents the theoretical power (denoted by line) and the Monte-Carlo estimates for
the power (denoted by •) of test (2) for the given length n = 106 with θ = 0.503,
m = 2 · 105, k = 8 · 105, K = 103. One can see, that Monte-Carlo estimates agreed
with theoretical results.

Figure 1: Performance of test Figure 2: Comparison of the powers

Figure 2 presents estimated power of Lempel-Ziv compression test from NIST
SP800-22 (denoted by ◦) and the estimated power of the proposed test (2), constructed
on the base of LZ-predictor (denoted by •) w.r.t. the parameter θ of Bernoulli trials
with n = 106, m = 2 · 105, k = 8 · 105, K = 8 · 103. One can see that the proposed test
is more powerful than Lempel Ziv compression test.
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