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Abstract

Low-complexity robust modifications to the Tukey boxplot based on fast
highly efficient robust estimates of scale are proposed. The performance of the
Tukey boxplot and its modified robust versions is measured relative to identi-
fication of outliers in Monte Carlo experiments at contaminated normal distri-
butions. The obtained results show that the proposed methods outperform the
conventional Tukey boxplot and the classical Grubbs test.

1 Introduction

Robust statistics provides stability of statistical inferences under departures from the
accepted distribution models. Although robust statistical procedures involve highly
refined asymptotic tools, they exhibit satisfactory behavior within small samples and
therefore are quite useful in real-world applications.

In parallel with robust statistics, practical methods for analyzing data evolved
known as Exploratory Data Analysis (EDA). A significant feature of EDA is that
it does not assume an underlying probability distribution for the data which is typical
in classical statistical methods and therefore is flexible in practical settings.

Our work represents new results in robust data analysis technologies, providing
alternatives to the boxplot technique. The univariate Tukey method summarizes the
characteristics of a data distribution allowing for a quick visual inspection of streams
of data over windows. Despite being a simple data analysis tool, it concisely summa-
rizes information about the location, scale, asymmetry, tails, and outliers in the data
distribution. In our study, we concentrate on visualization of distribution tails and on
detection of outliers in the data.

The remainder of the paper is organized as follows. In Section 2, two new robust
versions of the Tukey boxplot based on the highly efficient robust estimates of scale are
proposed. In Section 3, two new rules for detection of outliers based on the proposed
robust boxplots are introduced and examined on the contaminated Gaussian data. In
Section 4, some conclusions are drawn.

2 Robust Modifications of the Tukey Boxplot

The Tukey univariate boxplot [5] is specified by five parameters: the two extremes, the
upper UQ (75th percentile) and lower LQ (25th percentile) quartiles and the median
(50th percentile). The lower and upper extremes of a boxplot are defined as

xL = max
{
x(1), LQ−

3

2
IQR

}
, xU = min

{
x(n), UQ+

3

2
IQR

}
. (1)
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Different streams of data are compared via their respective boxplots in a quick and
convenient way. It is a common practice to identify outliers by those points which
are located beyond the extremes (maximum and minimum) and mark them within the
corresponding boxplots.

Although the Tukey boxplot is a widely used tool for anomaly detection, it can be
modified for better performance. For estimating the width of the central part of a data
distribution, (the box part of the boxplot), the sample interquartile range (IQR) can
hardly be improved, since it is a natural choice for representation of the half of the
data distribution mass.

The remaining possibilities of improving most refer to the choice of robust estimates
of scale used for visualization of tail areas and anomalies in the data (the boxplot
lower and upper extremes). In this case, the sample interquartile range IQR as a
robust estimate of scale is not the best choice as its efficiency and robustness can be
considerably improved [2].

Since the interquartile range is less resistant to outliers than the median absolute
deviation MADn x = medi |xi − medx| [2], a more robust rule for constructing the
boxplot extremes can be given by

xL = max{x(1), LQ− kMADMADn}, xU = min{x(n), UQ+ kMADMADn}, (2)

where kMAD is a threshold coefficient chosen from additional considerations.
Although the median absolute deviation MADn is a highly robust estimate of scale

with the maximal value of the breakdown point ε∗ = 0.5, its efficiency is only 0.37 at
the normal distribution. In [3], a highly efficient robust estimate of scale Qn has been
proposed: it is close to the lower quartile of the absolute pairwise differences |xi − xj|,
and it has the maximal breakdown point 0.5 as for MADn but much higher efficiency
0.82. The drawback of this estimate is its low computation speed; the time complexity
of Qn is of a greater order than of MADn.

In [4], an M -estimate of scale denoted by FQn whose influence function is approx-
imately equal to the influence function of the estimate Qn is proposed

FQn = 1.483MADn

(
1− Z0 − n/

√
2

Z2

)
, (3)

where

Zk =
n∑
i=1

uki e
−u2i /2 , ui =

xi −medx
1.483MADn

, k = 0, 2; i = 1, . . . , n.

The efficiency and breakdown point of FQn are equal to 0.81 and to 0.5, respectively.
Based on the highly efficient robust estimate FQn of scale, we propose a new rule

for the boxplot extremes defined as

xL = max{x(1), LQ− kFQ FQn}, xU = min{x(n), UQ+ kFQ FQn}. (4)

3 Performance Evaluation

The proposed robust boxplots as alternatives to the Tukey boxplot, differ in estimating
tail areas and consequently in detecting outliers. Therefore, we undertake a comparison
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study involving the robust and Tukey versions relative to detection of outliers.
In statistics, an outlier is an observation that is numerically distant from the rest

of the data. A frequent cause of outliers is a mixture of two distributions, namely, a
combination of ”good data” and ”bad data”.

Within the classical approach to detection of outliers, an observation x is taken as
an outlier if |x− x|/S > kα, where x is the sample mean, S is the standard deviation,
and the threshold kα is determined from the given false alarm rate at the normal
distribution. This rule is the classical Grubbs test [1].

In this paper, we most consider the boxplot (BP) detection tests of the form: an
observation x is regarded as an outlier if x < xL or x > xU , where xL and xU are the
lower and upper extremes, respectively. In this setting, these thresholds also depend
on a free parameter k, which is chosen from the false alarm rate α = 0.1.

The Monte Carlo experiments are conducted by generating 300 samples of obser-
vations from the mixture of normal distributions (Tukey’s model of gross errors)

f(x) = (1− ε)N(x; 0, 1) + εN(x;µ, s), (5)

where 0 ≤ ε < 1 is the probability of outliers in the data and s > 1 is their scale.
For evaluating the performance of different tests, the sensitivity (SE) and specificity

(SP) measures are used in the comparative study. Note that the sensitivity is nothing
but the test power, and the specificity is just unit minus the false alarm probability.
These two metrics are combined into a single measure, namely, the harmonic mean
between SE and SP: H-mean= 2SE SP/(SE + SP ). The introduced H-mean is an
analog to the widely used in IR studies F -measure, which is the harmonic mean between
the recall (R) and the precision (P): F = 2RP/(R+P ). The H-mean can be naturally
used for performance evaluation in detection of outliers, since tests with different values
of the false alarm probability can be effectively compared. In our study, the false alarm
rates for the Tukey and modified boxplots are α = 0.06 and α = 0.1, respectively.

The results of Monte Carlo experiment are given in Tables 1-2 with the best per-
forming statistics represented in boldface.

Table 1: H-means under scale contamination: µ = 0, s = 3.

ε = 0.1 20 50 100 1000 10000
Tukey BP 0.64 0.72 0.72 0.72 0.72
MAD-BP 0.67 0.72 0.73 0.73 0.73
FQ-BP 0.66 0.72 0.72 0.72 0.73
Grubbs test 0.17 0.29 0.30 0.30 0.30

From Table 1 it follows that under scale contamination, the performances of boxplot
tests, generally, are close to each other, and all of them outperform the classical Grubbs
test, which is catastrophically bad. This effect can be explained by non-robustness of
the Grubbs test forming statistics, the sample mean and standard deviation, under
contamination.
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Table 2: H-means under shift contamination: µ = 3, s = 1, n = 100.

ε 0.05 0.10 0.20 0.30 0.40 0.50
Tukey BP 0.63 0.62 0.59 0.55 0.51 0.43
MAD-BP 0.65 0.65 0.60 0.56 0.52 0.44
FQ-BP 0.67 0.67 0.61 0.56 0.50 0.40

Grubbs test 0.65 0.56 0.41 0.31 0.25 0.21

Further, the robust MAD and FQ versions are slightly but systematically better
than the Tukey boxplot test. Similar results are also obtained for the gross error models
with shift contamination.

In Table 2, it is observed that with small and moderate levels of shift contamina-
tion, the FQ-boxplot is marginally better than its competitors. For larger fractions
of contamination (ε ≥ 0.3), the MAD-boxplot outperforms its competitors. It can be
explained by the fact that the MAD is a minimax bias estimate of scale under the
Tukey gross error model [2].

4 Conclusions

The two robust versions of the Tukey boxplot are proposed. Both versions aim at
the symmetric distribution as their classical counterpart, the first MAD-BP being
preferable under heavy contamination, while the second FQ-BP – under moderate
contamination. The thresholds k can be adjusted to the adopted level of the false alarm
probability α: we recommend the values kMAD = 1.44 and kFQ = 0.97 corresponding
to the rate α = 0.1 under normality. All the boxplot tests considerably outperform the
classical Grubbs test, which is catastrophically bad under contamination.
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