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Abstract: Problems of robust statistical forecasting are 

considered for autoregressive time series observed under 

distortions generated by interval censoring. Three types 

of robust forecasting statistics are developed; mean-

square risk is evaluated for the developed forecasting 

statistics. Numerical results are given. 
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1. INTRODUCTION  

Autoregressive model AR(p) of order p developed by 

Box and Jenkins [1] is widely used to describe real time 

series with dependent observations in many fields, such as 

economy, finance, meteorology, astronomy, medicine 

[1, 2]. The case of “full data”, where all observations are 

exactly known, is well studied [1–3]. Also the case, where 

some observations are missing and we haven’t any 

information about them [3, 4], is studied. Nowadays the 

“middle” situation, where some observations are 

unknown but we have some additional information on 

their location, is becoming attractive and interesting 

direction of study [5, 6].  

We study the situation where exact values of some 

observations are unknown, but they belong to certain 

intervals. This situation is usually called interval 

censoring [5–7]. Interval censoring can appear because of 

detection limits of measuring devices, high costs of 

measurement, disorders of equipment [5–7]. Censoring 

happens in physical science, engineering, business, 

economics and meteorology [5]. In this paper we solve 

the problems of forecasting of autoregressive time series 

under interval censoring. In practice the censored 

observations are usually replaced by some naive 

estimators, e.g. by the center of the interval or by its upper 

or lower bound. The risk of forecasting, based on such 

imputations, is usually high, so it is necessary to construct 

a robust forecasting statistic to improve the quality of 

prediction for time series containing censored 

observations. 

 

2. MATHEMATICAL MODEL 

Consider the AR(p) time series model [1] 




 tuxx t

p

i

itit  ,
1

 Z, (1) 
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the unit circle,  tu  are i.i.d. normal random variables: 

0}{ tuE ,  2}{ tuD , ),0(~ 2Nut . So we 

have a strictly stationary process [1]. 

Instead of the observations Txx ,,1   we observe only 

random events: 
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where  iA  are some known Borel sets, pT   is the 

length of the observation process. If  ii xA   is a 

singleton, then the value of the i-th observation is known. 

If  iii baA ,  is an interval, then we have the case of 

interval censoring. In this paper we consider only these 

two cases.  

A forecasting statistic for the future value 1
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numerical function of the observed events: 
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Conditional risk of forecasting 
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The main problem considered in this paper is to build 

the robust forecasting statistic (3) that minimizes the 

conditional risk (4) under censoring. 

 

3. GENERAL RESULTS FOR THE AR(p) MODEL 

Let the last )1(  qpTq observations are censored 

and other observations are exactly known: 
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 qTqT xA   ,…,  11 xA  . 

(5) 

Consider the problem of construction of the robust 

forecasting statistic 1
€

Tx  for the situation, where the 

parameters p ,  i  and   of the model (1) are known. 

Introduce the notations: 




 
p

i

iTipTpT xxxpT
1

11),(   , 

),,|,,(),,( 111, xxxxpxxp qTqTTqTTqT    . 

Theorem 1. Let values qTxx ,,1   and events 
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and its risk is the conditional variance: 
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Corollary 1. If TT ba  , …, 11   qTqT ba , then the 

robust forecasting statistic and its risk are 
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In Corollary 1 we consider the asymptotic case of “full 

data”: TTT bax  , …, 111   qTqTqT bax . The 

results indicated in Corollary 1 coincide with the well 

known results for this case in [1–3].  
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Lemma 1. Let values qTxx ,,1   and events 
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Theorem 2. Let values 11 ,, Txx   and the event 
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forecasting statistic is 
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where )(x  is the standard normal probability 

distribution function and )(x  is the standard normal 

probability density function. 

 

4. THE CASE OF THE AR(1) MODEL 

Consider now the AR(1) model 
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for the situation (5). As for the AR(p) model, we assume 

that the parameters   and   of the model (7) are known. 

Introduce the notations: 
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Theorem 3. Let values qTxx ,,1   and events 
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be observed. Then the robust forecasting statistic is 
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and its risk is 
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Analyze the properties of the forecasting statistic (8). 

Corollary 1. If Ta , …,  1qTa , 

Tb , …,  1qTb , then the robust forecasting 

statistic and its risk are  
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Conditions of Corollary 1 mean that at the time 

moments T, …, T-q+1 the observations Tx , …, 1qTx  

“become” missing. The results indicated in Corollary 1 

coincide with the known results for this case in [3, 4]. 

Corollary 2. If TT ba  , …, 11   qTqT ba , then the 

robust forecasting statistic and its risk are 
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Theorem 4. Let values qTxx ,,1   and events 
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It follows from this theorem that for prediction in the 

case of the AR(1) model we need to know only the last 

observed value qTx   and all censoring intervals after it. 

Consider two special cases: 1q  and Tq  . 
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The case 1q  means that the last observation is 

censored. To simplify our results let us write a  and b  



instead of Ta  and Tb . 

Theorem 6. Let the value 1Tx  and the event 
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Corollary 1. If a  and b , then the 
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Theorem 7. Let the assumptions of Theorem 6 take 
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Let us compare now the constructed forecasting 

statistic (9) and widely used in practice forecasting 

statistics. 
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If 0 ab , then the risk has the following 

asymptotic expansion: 
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The asymptotic expansions (under 0 ab ) for 

the forecasting statistics (9) and (12) are similar. But we 

will see in Section 5 that if the length of the censoring 

interval increases, then the risk of the forecasting statistic 

(12) becomes higher than the risk of the robust 

forecasting statistic (9). 

Corollary 1. If a  and b , then the risk of 
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 ),(* baxA TT   be observed. Then the risk of the 

forecasting statistic (13) is 
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Corollary 1. If 0 ab , then the risk of the 

forecasting statistic (13) is 2

2 )( Tr . 

So if the length of the censoring interval   is close to 

zero, then the forecasting statistic (13) gives a prediction 

that is close to the optimal one. But as we will see in 

Section 5 if  is increasing, then the quality of prediction 

of the forecasting statistic (13) becomes extremely bad 

(the risk grows very fast). 

 

5. NUMERICAL RESULTS 

Computer experiments are performed for the case of 

the AR(1) model (7) and 1q  to compare the 

experimental risk of forecasting statistics (9), (12), (13) 

and the theoretical risk given by Theorems 6, 8, 9. For 

every fixed   the Monte-Carlo experiments with 10000 

simulations of time series are used to evaluate the 

experimental value of the risk and its 95%-confidence 

limits. For simulations the following values of parameters 

are used: 1p , 8.0 , 12  , 100T , 

 15,,1,5.0,0  ab . The last observation of the 

time series is replaced by the random censoring interval 

 TT ba , : the length of the interval  TT xa ,  is   and the 

length of the interval  TT bx ,  is  1 , where   is the 

standard uniformly distributed random variable. 

Fig.1 presents experimental values of the risk for three 

forecasting statistics (9), (12), (13). As we can see the 

robust forecasting statistic (9) has the smallest risk. The 

risk of the forecasting statistic (12) is approximately two 

times higher than for the optimal one. The risk of the 

forecasting statistic (13) grows very fast.  

Fig.2–4 present experimental values of the risk and its 

95%-confidence limits for each forecasting statistic. 

Theoretical values of the risk are also given. This figures 

show a sufficiently good fit of theoretical and 

experimental results. 
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Fig.1 – Comparison of risks for all three forecasting 

statistics: 1 – risk of the robust forecasting statistic (9), 2 – risk 

of the forecasting statistic (12), 3 – risk of the forecasting 

statistic (13). 
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Fig.2 – Theoretical and experimental values of the risk for 

the robust forecasting statistic (9): 1 – experimental values of 

the risk, 2 – theoretical values of the risk, 3 – 95%-confidence 

limits. 
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Fig.3 – Theoretical and experimental values of the risk for 

the forecasting statistic (12): 1 – experimental values of the risk, 

2 – theoretical values of the risk, 3 – 95%-confidence limits. 
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Fig.4 – Theoretical and experimental values of the risk for 

the forecasting statistic (13): 1 – experimental values of the risk, 

2 – theoretical values of the risk, 3 – 95%-confidence limits. 
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