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Abstract—Internal Symmetry Networks are a new developed 

class of Cellular Neural Network inspired by the phenomenon of 

internal symmetry in quantum physics. The structures of the nets 

are based on irreducible group representations. Recurrent cycles 

are extended to the nets very recently. Dynamic recurrent cycles 

are proved to be effective by many experiments. In this paper, 

train them by backpropagation with noise to perform wallpaper 

image processing tasks.  
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I.  INTRODUCTION 

Cellular Neural Networks (CNN) [1], invented from 
Cellular automata, are widely used for image processing tasks 
[2]. Generally, most previous work design weights of a CNN 
by hand or by global random search. Comparatively little 
research has been done on the training of CNNs by 
backpropagation [3]. Here, we report the on the training, by 
backpropagation, of a particular class of CNN known Internal 
Symmetry Networks (ISN), which employ a special kind of 
weight sharing scheme inspired from quantum physics. 
Feedforward ISNs have previously been trained by TD-
learning to perform move evaluation for the game of Go [4]. In 
Then ISN framework is extended to recurrent connections for 
wallpaper segmentation and performs well. [5] In this paper, 
Dynamic Cycle of Recurrent (DCR) connection strategy is 
applied based on the same wallpaper image segmentation task. 
There are many forms of Recurrent Neural Networks (RNN) 
[6] but DCR is a totally new form. In practice, structural noise 
with small value added to the training images can increase the 
accuracy during a limited period. Many studies also show the 
benefit of adding appropriate noise to training sets. [7] So a 
class of structural noise is added to the training images. It is 
found the error rate of the test image has been reduced to 1/6 of 
the previous work.  

 

             II. Internal Symmetry Networks 

Consider a Cellular Neural Network comprised of a large 
number of identical Simple Recurrent (Elman) Networks 
arranged in a cellular array. For image processing tasks, each 
pixel in the image will generally correspond to one cell in the 
array. For clarity of exposition, we assume a square image of 

size n-by-n, with n = 2k+1. The array can then be considered as 

a lattice  of vertices =[a,b] with –k  a,b  k. It will be 

convenient to denote by  the “extended” lattice which 
includes an extra row of vertices around the edge of the image, 

i.e.  = {[a,b]}-(k+1)  a,b  (k+1) . 

Many image processing tasks are invariant to geometric 
transformations of the image (rotations and reflections) as well 
as being shift-invariant (with appropriate allowance for “edge 
effects”). With this in mind, we design our system in such a 
way that the network updates are invariant to these 
transformations. A number of different weight sharing schemes 
have previously been proposed [4]. In the present work, we 
employ a recently developed weight sharing scheme known as 
Internal Symmetry Networks [8], based on group 
representation theory. 

The group G of symmetries of an (square) image is the 

dihedral group D8 of order 8. This group is generated by two 
elements r and s – where r represents a (counter-clockwise) 

rotation of 90 and s represents a reflection in the vertical axis 

(see in Appendix C). The action of D8 on  (or ) is given by 

         r [a, b] = [-b, a] 

s [a, b] = [-a, b]     (1) 

We will use M and N to denote neighborhood structures in 
the form of offset values: 

M = {[0,0], [1,0], [0,1], [-1,0], [0,-1]}, 

N = M  {[1,1], [-1,1], [-1,-1], [1,-1]} 

When viewed as offsets from a particular vertex, M 
represents the vertex itself plus the neighboring vertices to its 
East, North, West and South; N includes these but also adds the 
diagonal vertices to the North-East, North-West, South-West and 
South-East. Assuming the action of G on N (or M) is also given 

by (1), it is clear that for g  G,    and   N, 

g( + ) = g() + g(). 

Each cell  = [a,b]   has its own set of input, hidden and 

output units denoted by I
[a,b]

, H
[a,b]

 and O
[a,b]

. Each off-edge 

cell  = [a,b]  \ also has input and hidden units, but no 
output. The entire collection of input, hidden and output units I, 
H and O for the whole network can thus be written as: 
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I = {I
[a,b]

}[a,b] 

H = {H
[a,b]

}[a,b] 

O = {O
[a,b]

}[a,b] 

For an individual cell   , the neural network update 
equations are given by 

 

Hnew
 
 H(I,Hold)


= tanh(BH+NVHI


I
+ 

+MVHH

Hold

+
) 

O 

    O(I,Hnew)


 =    (BO+NVOI


I
+ 

+NVOH

Hnew

+
) 

 

where  is the sigmoid function (z)=1/(1+e
-z
). 

In other words, each cell is connected to its neighboring 

cells by input-to-hidden connections VHI , hidden-to-output 

connections VOH , input-to-output connections VOI and hidden-

to-hidden (recurrent) connections VHH . BH and BO represent 
the “bias” at the hidden and output units. We assume that for 

the off-edge cells (  \) the hidden units H

 remain 

identically zero, while the inputs I

 take on special values to 

indicate that they are off the edge of the image. For the 
experiments reported here, the hidden unit activations of all 
cells are updated synchronously. 

Any element g  G acts on the inputs I and output units O 
by simply permuting the cells: 

g(I) = { I
g[a,b]

 }[a,b] 

g(O) = { O
g[a,b]

 }[a,b] 

In addition to permuting the cells, it is possible for G to act in 
some or all of the hidden unit activations within each cell, in a 
manner analogous to the phenomenon of internal symmetry in 
quantum physics. The group D8 has five irreducible 
representations, which we will label as Trivial(T), 
Symmetrical(S), Diagonal(D), Chiral(C) and Faithful(F). They 
are depicted visually in Fig 2, and presented algebraically via 
these equations: 

 

r (T)   =  T,  s(T)  =   T 

r (S)   = -S,  s(S)  =   S 

r (D)  = -D, s(D)  = - D 

r (C)  =  C,  s(C)  = - C 

r (F)1 = -F2, s(F)1  = -F1 

r (F)2 =  F1, s(F)2  =   F2 

 

We consider, then, five types of hidden units, each with its own 
group action determined by the above equations. In general, an 
ISN can be characterized by a 5-tuple specifying the number of 

each type of hidden node at each cell (iT,iS,iD,iC,iF). Because it 
is 2-dimensional, hidden units corresponding to the Faithful 
representation will occur in pairs (F1, F2) with the group action 

“mixing” the activations of F1 and F2. The composite hidden 
unit activation for a single cell then becomes a cross-product 

H = T
iT  S

iS  D
iD  C

iC  (F1  F2)
iF  

with the action of G on H given by 

g(H) = {g(H
g[a,b]

)}[a,b] 

We want the network to be invariant to the action of G in the 

sense that for all g  G, 

g(Hnew (I, Hold) = Hnew (g(I), g(Hold)) 

g(O (I, Hnew) = O (g(I), g(Hnew)) 

This invariance imposes certain constraints on the weights 
of the network, which are outlined in the Appendix A and B.  

III. DYNAMIC CYCLE OF RNN 

Inspired from the phenomenon of multi-attractors of RNN, 
about 100 related experiments were tried. It is proved by 
experiment that adding cycles can reduce the lowest test error, 
in many cases that meet the requirement of Point 4. Elman 
Network [9] is arranged in a cellular array. Use a strategy of 
DCR below: 

1.Start to run the RNN via a small number of cycles.  

2.Evaluate the performance of task each cycle of each epoch  
and stop when appropriately. 

3.Select an epoch to read the generated weight for initialization 
and restart to run the RNN, but with a larger number of cycles. 

4.Go to Step 2 

    In step2, the evaluation criteria can be similar to the 
trajectory of epochs of non-recurrent NN. If under-fitting, the 
cycle is too small; and if over-fitting, it is too big.    

 

IV. EXPERIMENTS 

ISN framework is test on wallpaper segmentation task. For 
black and white images, the network has two inputs per pixel. 
One input encodes the intensity of the pixel as a grey scale 
value between 0 and 1. The other input is a dedicated "off-
edge" input which is equal to 0 for inputs inside the actual 
image, and equal to 1 for inputs off the edge of the image (i.e. 

for vertices in \). This kind of encoding could in principal 
be extended to color images by using four inputs per pixel 
(three to encode the R,G,B or Y,U,V values, plus the dedicated 
"off-edge" input). 

     Wallpaper segmentation is a simplified version of image 
segmentation, where each image is a patchwork of different 
styles of "wallpaper", each consisting of an array of small 
motifs on an otherwise blank canvass. By experiments on 
wallpaper, some useful ideas can be extended to texture 
segmentation. 

The training images and test image for this task are shown 
in the top row of Fig 5. The network has 4 outputs - one for 
each style of wallpaper. During training, the target value at 



each pixel is 1 for the k
th
 output and 0 for the other outputs, if 

the pixel belongs to a part of the image corresponding to the k
th
 

style of wallpaper. During testing, the largest of the 4 outputs 
for each pixel is taken to be the network's prediction of which 
style of wallpaper is present in that part of the image. The test  

image combines all four styles, and the spacing between the 
motifs is slightly larger for the test image than for the training 
images. 

For each input image, the ISN is applied for 10 cycles. At 
each cycle, the hidden unit activations for all cells are updated 
synchronously, with the new values depending on the inputs 
and (recurrently) on the values of neighboring hidden nodes at 
the previous time step. 

We found that the best results were obtained using cross 

entropy minimization, with a learning rate of 510
-8

, 
momentum of 0.3 and hidden unit configuration of (4,0,0,0,0). 
Misclassification on the training images undergoes several 
initial fluctuations, but finally reaches zero after 539K epochs 
and remains zero thereafter. The number of misclassified pixels 
on the test image continues to fall, reaching a minimum of 28 
(from a total of 1444 pixels) between 890K and 896K, but then 
increases to around 50. 

Fig 1 shows the classification provided by the network at 
epoch 890K, for cycles 1 to 10. For the training images, the 
network classifies all pixels correctly at cycle 4, shows slight 
misclassification at cycle 5, but returns to correct classification 
for cycles 6 to 10. For the test image, the number of 
misclassified pixels continues to drop, reaching a minimum of 
28 pixels by Cycle 10. 

Then by evaluation of the trajectory of all recurrent cylces 
of epoch 890K, it is possible for the test error still to decrease 
when more cycles are given. So DCRNN is applied here, with 
20 cycles. 

Figure 2 shows the classification provided by the new 
network at epoch 2010K, for cycles 1 to 6. (Test error increase 
after cycle 7 and there are not important improvements after 
cycle 10). For the training images, the network classifies all 
pixels correctly after cycle 3. For the test image, the number of 
misclassified pixels continues to drop, reaching a minimum of 
23 pixels by Cycle 6. Fig 3 shows the two output images with 
the lowest errors from Fig 1 and 2 respectively. 

As shown in Fig 4, structural noise is added to the training 
set. 6 cycles are applied initially. In epoch 4380K, the lowest of 
number of misclassified pixels on the test image is 20 at cycle 
6. Then it increases to around 40 and 50 at cycle 5 and 6 
respectively. With another experiment with 10 cycles initially, 
the lowest number of misclassified pixels on the test image is 
still at cycle 5 or 6. So DCRNN is applied at epoch 4380K with 
cycle 10. At cycle 4650K, the number of misclassified pixels 
on the test image decreases to 5 at cycle 6, and then oscillate 
around 10. 

V. CONCLUSION 

We have shown that Internal Symmetry Networks can be 
successfully trained by backpropagation to perform two simple 
image processing tasks. When recurrent connections are 

included, stability becomes an issue; however, successful 
training can sometimes be achieved, provided the learning rate 
is sufficiently low (and the number of training epochs 
correspondingly large). 

For the wallpaper segmentation task, a configuration 
including only the Trivial type of hidden unit appeared to be 
more effective. One possible reason for this is that our hidden 
units were only connected to neighboring input cells within a 

small (33) neighborhood. This small neigborhood, combined 
with the symmetry constraints, meant that the Symmetrical and 
Diagonal hidden units were connected to only 4 inputs each, 
compared to 9 inputs for the Trivial hidden units. In ongoing 
work, we are extending our approach to include connections to 

a larger (55) neighborhood, in which case the Symmetrical 
and Diagonal units would be connected to 16 inputs (compared 
to 25 inputs for the Trivial units). We plan to test whether this 
larger neighborhood would shift the balance in the relative 
potency of the various hidden unit types. 

      A new method DCR for BP is applied for a wallpaper-

segmentation task. The accuracy has been improved. The 

interesting point is the noticeable improvement accuracy 

emerges in an earlier cycle not the one that has the best 

accuracy during all the cycles at the restarting point. 

In many research of NN, parameter tuning is focused on 

learning rate, momentum, weight-decay, delta decay and cross 

entropy, especially the first two. In practice, recurrent cycle is 

also required to tune. Meanwhile, it is more time consuming 

for cycle tuning than all the other parameters.  DCR provides a 

strategy to avoid restart from the beginning but some epoch 

with high evaluation score. Some related experiments show 

that just adding cycle cannot guarantee to be more efficient. If 

cycles are set to 20 initially, the missing classified pixels are 

around 90 in epoch 1.76M. So overfitting produces time 

consuming but guarantee accuracy, but it is better to use DCR 

not set too many initial cycles.  

By adding some structural noise to the training set, it is excited 

to see the nearly perfect output.   

This experiment uses ISN, a specific CNN with BP. However, 

overfitting phenomenon in cycles of RNN can be extended to 

all kinds of BP. 
The future work is to analyze these correct restarting 

conditions and generate some algorithm with more detail.    
DCR cannot be only combined with 3*3 neighboring, but also 
5*5 or larger n*n. Then it is possibly to do some more             
complicated tasks. 
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Figure 2 

  

Figure 3 
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APPENDIX – WEIGHT SHARING 

 Feedforward Connections 

 

V


OH = [ V


OT V


OS V


OD V


OC V


OF1 V


OF2 ] 

V


HI  = [ V


TI  V


SI  V


DI  V


CI V


F1I  V


F2I ]
T 

VEOI = VNOI  = VWOI = VSOI , VNEOI = VNWOI = VSWOI = VSEOI 
VEOT = VNOT = VWOT = VSOT , V

NE
OT= VNWOT= VSWOT = VSEOT 

VETI  = VNTI  = VWTI = VSTI ,  VNETI = VNWTI = VSWTI  = VSETI 

VOOF2= VOOF2= VOOF1= V
O

OF2= 0 

VEOF1= VNOF2=-VWOF1=-V
S

OF2= VEF1I= VNF2I =-VWF1I =-VSF2I 

VEOF2= VNOF1= VWOF2= V
S

OF1 = VEF2I= VNF1I = VWF2I = VSF1I = 0 

 
VNEOF1=-VNWOF1=-VSWOF1=VSEOF1, VNEOF2=VNWOF2=-VSWOF2=-VSEOF2 
VNEF1I= -VNWF1I=-VSWF1I=VSEF1I , VNEF2I =VNWF2I =-VSWF2I=-VSEF2I 

VEOS  = -VNOS  = VWOS =-VSOS  , VNEOD =-VNWOD= VSWOD=-VSEOD 

VESI  =  -VNSI  = VWSI  =-VSSI   , VNEDI =-VNWDI = VSWDI =-VSEDI 

V


OD =  V


DI = 0,                 {O, E, N, W, S} 

V


OS =  V


SI = 0,                 {O, NE, NW, SW, SE} 

V


OC =  V


CI = 0,                 {O, E, N, W, S, NE, NW, SW, SE} 
 

 Recurrent Connections 

V


HH =  

V


TT V


TS V


 TD V


TC V


TF1 V


TF2 

V


ST V


SS V


 SD V


SC V


SF1 V


SF2 

V


DT V


DS V


 DD V


DC V


DF1 V


CF2 

V


CT V


CS V


 CD V


CC V


CF1 V


DF2 

V


F1T V


F1S V


F1D V


F1C V


F1F1 V


F1F2 

V


F2T V


F2S V


F2D V


F2C V


F2F1 V


F2F2 

 
VETT  =  VNTT  = VWTT  = VSTT  ,  V

NE
SS= VNWSS= VSWSS= VSESS 

VETS  = -VNTS = VWTS  =-VSTS  ,  V
E

DC = -VNDC = VWDC = -VSDC 

VNEST =-VNWST= VSWST=-VSEST , V
NE

CD=-VNWCD= VSWCD=-VSECD 

VOTS  = VOTFi  = -VOSFi = VODC = V
O

DFi =  VOCFi = 0 
VOST  = VOFiT  = -VOFiS = VOCD = V

O
FiD =  VOFiC = 0 

V


DD = V


CC = 0,                                           {E, N, W, S} 

V


TD = V


TC = V


SD = V


SC = 0,                     {O, E, N, W, S} 

V


DT = V


CT = V


DS = V


CS = 0,                     {O, E, N, W, S} 
VESF1 = -VNSF2 = -VWSF1 = V

S
SF2 , VETF1 =  VNTF2 =-VWTF1 = -VSTF2 

VEF1S = -VNF2S = -VWF1S = V
S

F2S , VEF1T =  VNF2T =-VWF1T = -VSF2T 

VESF2 =  VNSF1 =  VWSF2 =  V
S

SF1 , VETF2 =  VNTF1 = VWTF2 =  VSTF1 = 0 

VEF2S =  VNF1S =  VWF2S =  V
S

F1S , VEF2T =  VNF1T = VWF2T =  VSF1T = 0 
VEDF2 =  VNDF1 = -VWDF2 =-V

S
DF1 , VECF2 =-VNCF1 =-VWCF2 =  VSCF1 

VEF2D =  VNF1D = -VWF2D =-V
S

F1D , VEF2C =-VNF1C =-VWF2C =  VSF1C 

VEDF1 =  VNDF2 =  VWDF1 = V
S

DF2 , VECF1 = VNCF2 = VWCF1 =  VSCF2 = 0 

VEF1D =  VNF2D =  VWF1D = V
S

F2D , VEF1C = VNF2C = VWF1C =  VSF2C = 0 
VOF1F1 =  VOF2F2 = 0 
VEF1F1= VNF2F2 = VWF1F1= VSF2F2 , VEF2F2= VNF1F1= VWF2F2= VSF1F1 = 0 

V


 F1F2 = V


 F2F1 = 0,                                       {O,E, N, W, S} 

 

 

C. The dihedral group D8 with generators r, s 

 

  D The five irreducible representations of D8 
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