
Recurrent Internal Symmetry Networks by

Backpropagation in Wallpaper Image Segmentation

 Guanzhong Li

School of Computer Science & Engineering

University of New South Wales

Sydney, Australia

glix955@cse.unsw.edu.au

Abstract—Internal Symmetry Networks are a new developed

class of Cellular Neural Network inspired by the phenomenon of

internal symmetry in quantum physics. The structures of the nets

are based on irreducible group representations. Recurrent cycles

are extended to the nets very recently. Dynamic recurrent cycles

are proved to be effective by many experiments. In this paper,

train them by backpropagation with noise to perform wallpaper

image processing tasks.

Keywords – cellular neural networks; group representations;

internal symmetry; dynamic cycle of recurrent;noise

I. INTRODUCTION

Cellular Neural Networks (CNN) [1], invented from
Cellular automata, are widely used for image processing tasks
[2]. Generally, most previous work design weights of a CNN
by hand or by global random search. Comparatively little
research has been done on the training of CNNs by
backpropagation [3]. Here, we report the on the training, by
backpropagation, of a particular class of CNN known Internal
Symmetry Networks (ISN), which employ a special kind of
weight sharing scheme inspired from quantum physics.
Feedforward ISNs have previously been trained by TD-
learning to perform move evaluation for the game of Go [4]. In
Then ISN framework is extended to recurrent connections for
wallpaper segmentation and performs well. [5] In this paper,
Dynamic Cycle of Recurrent (DCR) connection strategy is
applied based on the same wallpaper image segmentation task.
There are many forms of Recurrent Neural Networks (RNN)
[6] but DCR is a totally new form. In practice, structural noise
with small value added to the training images can increase the
accuracy during a limited period. Many studies also show the
benefit of adding appropriate noise to training sets. [7] So a
class of structural noise is added to the training images. It is
found the error rate of the test image has been reduced to 1/6 of
the previous work.

 II. Internal Symmetry Networks

Consider a Cellular Neural Network comprised of a large
number of identical Simple Recurrent (Elman) Networks
arranged in a cellular array. For image processing tasks, each
pixel in the image will generally correspond to one cell in the
array. For clarity of exposition, we assume a square image of

size n-by-n, with n = 2k+1. The array can then be considered as

a lattice  of vertices =[a,b] with –k  a,b  k. It will be

convenient to denote by  the “extended” lattice which
includes an extra row of vertices around the edge of the image,

i.e.  = {[a,b]}-(k+1)  a,b  (k+1) .

Many image processing tasks are invariant to geometric
transformations of the image (rotations and reflections) as well
as being shift-invariant (with appropriate allowance for “edge
effects”). With this in mind, we design our system in such a
way that the network updates are invariant to these
transformations. A number of different weight sharing schemes
have previously been proposed [4]. In the present work, we
employ a recently developed weight sharing scheme known as
Internal Symmetry Networks [8], based on group
representation theory.

The group G of symmetries of an (square) image is the

dihedral group D8 of order 8. This group is generated by two
elements r and s – where r represents a (counter-clockwise)

rotation of 90 and s represents a reflection in the vertical axis

(see in Appendix C). The action of D8 on  (or ) is given by

 r [a, b] = [-b, a]

s [a, b] = [-a, b] (1)

We will use M and N to denote neighborhood structures in
the form of offset values:

M = {[0,0], [1,0], [0,1], [-1,0], [0,-1]},

N = M  {[1,1], [-1,1], [-1,-1], [1,-1]}

When viewed as offsets from a particular vertex, M
represents the vertex itself plus the neighboring vertices to its
East, North, West and South; N includes these but also adds the
diagonal vertices to the North-East, North-West, South-West and
South-East. Assuming the action of G on N (or M) is also given

by (1), it is clear that for g  G,    and   N,

g( + ) = g() + g().

Each cell  = [a,b]   has its own set of input, hidden and

output units denoted by I
[a,b]

, H
[a,b]

 and O
[a,b]

. Each off-edge

cell  = [a,b]  \ also has input and hidden units, but no
output. The entire collection of input, hidden and output units I,
H and O for the whole network can thus be written as:

mailto:glix955@cse.unsw.edu.au

I = {I
[a,b]

}[a,b]

H = {H
[a,b]

}[a,b]

O = {O
[a,b]

}[a,b]

For an individual cell   , the neural network update
equations are given by

Hnew

 H(I,Hold)


= tanh(BH+NVHI


I
+

+MVHH

Hold

+
)

O

  O(I,Hnew)


 =  (BO+NVOI


I
+

+NVOH

Hnew

+
)

where  is the sigmoid function (z)=1/(1+e
-z
).

In other words, each cell is connected to its neighboring

cells by input-to-hidden connections VHI , hidden-to-output

connections VOH , input-to-output connections VOI and hidden-

to-hidden (recurrent) connections VHH . BH and BO represent
the “bias” at the hidden and output units. We assume that for

the off-edge cells (  \) the hidden units H

 remain

identically zero, while the inputs I

 take on special values to

indicate that they are off the edge of the image. For the
experiments reported here, the hidden unit activations of all
cells are updated synchronously.

Any element g  G acts on the inputs I and output units O
by simply permuting the cells:

g(I) = { I
g[a,b]

 }[a,b]

g(O) = { O
g[a,b]

 }[a,b]

In addition to permuting the cells, it is possible for G to act in
some or all of the hidden unit activations within each cell, in a
manner analogous to the phenomenon of internal symmetry in
quantum physics. The group D8 has five irreducible
representations, which we will label as Trivial(T),
Symmetrical(S), Diagonal(D), Chiral(C) and Faithful(F). They
are depicted visually in Fig 2, and presented algebraically via
these equations:

r (T) = T, s(T) = T

r (S) = -S, s(S) = S

r (D) = -D, s(D) = - D

r (C) = C, s(C) = - C

r (F)1 = -F2, s(F)1 = -F1

r (F)2 = F1, s(F)2 = F2

We consider, then, five types of hidden units, each with its own
group action determined by the above equations. In general, an
ISN can be characterized by a 5-tuple specifying the number of

each type of hidden node at each cell (iT,iS,iD,iC,iF). Because it
is 2-dimensional, hidden units corresponding to the Faithful
representation will occur in pairs (F1, F2) with the group action

“mixing” the activations of F1 and F2. The composite hidden
unit activation for a single cell then becomes a cross-product

H = T
iT  S

iS  D
iD  C

iC  (F1  F2)
iF

with the action of G on H given by

g(H) = {g(H
g[a,b]

)}[a,b]

We want the network to be invariant to the action of G in the

sense that for all g  G,

g(Hnew (I, Hold) = Hnew (g(I), g(Hold))

g(O (I, Hnew) = O (g(I), g(Hnew))

This invariance imposes certain constraints on the weights
of the network, which are outlined in the Appendix A and B.

III. DYNAMIC CYCLE OF RNN

Inspired from the phenomenon of multi-attractors of RNN,
about 100 related experiments were tried. It is proved by
experiment that adding cycles can reduce the lowest test error,
in many cases that meet the requirement of Point 4. Elman
Network [9] is arranged in a cellular array. Use a strategy of
DCR below:

1.Start to run the RNN via a small number of cycles.

2.Evaluate the performance of task each cycle of each epoch
and stop when appropriately.

3.Select an epoch to read the generated weight for initialization
and restart to run the RNN, but with a larger number of cycles.

4.Go to Step 2

 In step2, the evaluation criteria can be similar to the
trajectory of epochs of non-recurrent NN. If under-fitting, the
cycle is too small; and if over-fitting, it is too big.

IV. EXPERIMENTS

ISN framework is test on wallpaper segmentation task. For
black and white images, the network has two inputs per pixel.
One input encodes the intensity of the pixel as a grey scale
value between 0 and 1. The other input is a dedicated "off-
edge" input which is equal to 0 for inputs inside the actual
image, and equal to 1 for inputs off the edge of the image (i.e.

for vertices in \). This kind of encoding could in principal
be extended to color images by using four inputs per pixel
(three to encode the R,G,B or Y,U,V values, plus the dedicated
"off-edge" input).

 Wallpaper segmentation is a simplified version of image
segmentation, where each image is a patchwork of different
styles of "wallpaper", each consisting of an array of small
motifs on an otherwise blank canvass. By experiments on
wallpaper, some useful ideas can be extended to texture
segmentation.

The training images and test image for this task are shown
in the top row of Fig 5. The network has 4 outputs - one for
each style of wallpaper. During training, the target value at

each pixel is 1 for the k
th
 output and 0 for the other outputs, if

the pixel belongs to a part of the image corresponding to the k
th

style of wallpaper. During testing, the largest of the 4 outputs
for each pixel is taken to be the network's prediction of which
style of wallpaper is present in that part of the image. The test

image combines all four styles, and the spacing between the
motifs is slightly larger for the test image than for the training
images.

For each input image, the ISN is applied for 10 cycles. At
each cycle, the hidden unit activations for all cells are updated
synchronously, with the new values depending on the inputs
and (recurrently) on the values of neighboring hidden nodes at
the previous time step.

We found that the best results were obtained using cross

entropy minimization, with a learning rate of 510
-8

,
momentum of 0.3 and hidden unit configuration of (4,0,0,0,0).
Misclassification on the training images undergoes several
initial fluctuations, but finally reaches zero after 539K epochs
and remains zero thereafter. The number of misclassified pixels
on the test image continues to fall, reaching a minimum of 28
(from a total of 1444 pixels) between 890K and 896K, but then
increases to around 50.

Fig 1 shows the classification provided by the network at
epoch 890K, for cycles 1 to 10. For the training images, the
network classifies all pixels correctly at cycle 4, shows slight
misclassification at cycle 5, but returns to correct classification
for cycles 6 to 10. For the test image, the number of
misclassified pixels continues to drop, reaching a minimum of
28 pixels by Cycle 10.

Then by evaluation of the trajectory of all recurrent cylces
of epoch 890K, it is possible for the test error still to decrease
when more cycles are given. So DCRNN is applied here, with
20 cycles.

Figure 2 shows the classification provided by the new
network at epoch 2010K, for cycles 1 to 6. (Test error increase
after cycle 7 and there are not important improvements after
cycle 10). For the training images, the network classifies all
pixels correctly after cycle 3. For the test image, the number of
misclassified pixels continues to drop, reaching a minimum of
23 pixels by Cycle 6. Fig 3 shows the two output images with
the lowest errors from Fig 1 and 2 respectively.

As shown in Fig 4, structural noise is added to the training
set. 6 cycles are applied initially. In epoch 4380K, the lowest of
number of misclassified pixels on the test image is 20 at cycle
6. Then it increases to around 40 and 50 at cycle 5 and 6
respectively. With another experiment with 10 cycles initially,
the lowest number of misclassified pixels on the test image is
still at cycle 5 or 6. So DCRNN is applied at epoch 4380K with
cycle 10. At cycle 4650K, the number of misclassified pixels
on the test image decreases to 5 at cycle 6, and then oscillate
around 10.

V. CONCLUSION

We have shown that Internal Symmetry Networks can be
successfully trained by backpropagation to perform two simple
image processing tasks. When recurrent connections are

included, stability becomes an issue; however, successful
training can sometimes be achieved, provided the learning rate
is sufficiently low (and the number of training epochs
correspondingly large).

For the wallpaper segmentation task, a configuration
including only the Trivial type of hidden unit appeared to be
more effective. One possible reason for this is that our hidden
units were only connected to neighboring input cells within a

small (33) neighborhood. This small neigborhood, combined
with the symmetry constraints, meant that the Symmetrical and
Diagonal hidden units were connected to only 4 inputs each,
compared to 9 inputs for the Trivial hidden units. In ongoing
work, we are extending our approach to include connections to

a larger (55) neighborhood, in which case the Symmetrical
and Diagonal units would be connected to 16 inputs (compared
to 25 inputs for the Trivial units). We plan to test whether this
larger neighborhood would shift the balance in the relative
potency of the various hidden unit types.

 A new method DCR for BP is applied for a wallpaper-

segmentation task. The accuracy has been improved. The

interesting point is the noticeable improvement accuracy

emerges in an earlier cycle not the one that has the best

accuracy during all the cycles at the restarting point.

In many research of NN, parameter tuning is focused on

learning rate, momentum, weight-decay, delta decay and cross

entropy, especially the first two. In practice, recurrent cycle is

also required to tune. Meanwhile, it is more time consuming

for cycle tuning than all the other parameters. DCR provides a

strategy to avoid restart from the beginning but some epoch

with high evaluation score. Some related experiments show

that just adding cycle cannot guarantee to be more efficient. If

cycles are set to 20 initially, the missing classified pixels are

around 90 in epoch 1.76M. So overfitting produces time

consuming but guarantee accuracy, but it is better to use DCR

not set too many initial cycles.

By adding some structural noise to the training set, it is excited

to see the nearly perfect output.

This experiment uses ISN, a specific CNN with BP. However,

overfitting phenomenon in cycles of RNN can be extended to

all kinds of BP.
The future work is to analyze these correct restarting

conditions and generate some algorithm with more detail.
DCR cannot be only combined with 3*3 neighboring, but also
5*5 or larger n*n. Then it is possibly to do some more
complicated tasks.

 Figure 1

Figure 2

Figure 3

FIG 4

APPENDIX – WEIGHT SHARING

 Feedforward Connections

V


OH = [V


OT V


OS V


OD V


OC V


OF1 V


OF2]

V


HI = [V


TI V


SI V


DI V


CI V


F1I V


F2I]
T

VEOI = VNOI = VWOI = VSOI , VNEOI = VNWOI = VSWOI = VSEOI
VEOT = VNOT = VWOT = VSOT , V

NE
OT= VNWOT= VSWOT = VSEOT

VETI = VNTI = VWTI = VSTI , VNETI = VNWTI = VSWTI = VSETI

VOOF2= VOOF2= VOOF1= V
O

OF2= 0

VEOF1= VNOF2=-VWOF1=-V
S

OF2= VEF1I= VNF2I =-VWF1I =-VSF2I

VEOF2= VNOF1= VWOF2= V
S

OF1 = VEF2I= VNF1I = VWF2I = VSF1I = 0

VNEOF1=-VNWOF1=-VSWOF1=VSEOF1, VNEOF2=VNWOF2=-VSWOF2=-VSEOF2
VNEF1I= -VNWF1I=-VSWF1I=VSEF1I , VNEF2I =VNWF2I =-VSWF2I=-VSEF2I

VEOS = -VNOS = VWOS =-VSOS , VNEOD =-VNWOD= VSWOD=-VSEOD

VESI = -VNSI = VWSI =-VSSI , VNEDI =-VNWDI = VSWDI =-VSEDI

V


OD = V


DI = 0,   {O, E, N, W, S}

V


OS = V


SI = 0,   {O, NE, NW, SW, SE}

V


OC = V


CI = 0,   {O, E, N, W, S, NE, NW, SW, SE}

 Recurrent Connections

V


HH =

V


TT V


TS V


 TD V


TC V


TF1 V


TF2

V


ST V


SS V


 SD V


SC V


SF1 V


SF2

V


DT V


DS V


 DD V


DC V


DF1 V


CF2

V


CT V


CS V


 CD V


CC V


CF1 V


DF2

V


F1T V


F1S V


F1D V


F1C V


F1F1 V


F1F2

V


F2T V


F2S V


F2D V


F2C V


F2F1 V


F2F2

VETT = VNTT = VWTT = VSTT , V

NE
SS= VNWSS= VSWSS= VSESS

VETS = -VNTS = VWTS =-VSTS , V
E

DC = -VNDC = VWDC = -VSDC

VNEST =-VNWST= VSWST=-VSEST , V
NE

CD=-VNWCD= VSWCD=-VSECD

VOTS = VOTFi = -VOSFi = VODC = V
O

DFi = VOCFi = 0
VOST = VOFiT = -VOFiS = VOCD = V

O
FiD = VOFiC = 0

V


DD = V


CC = 0,   {E, N, W, S}

V


TD = V


TC = V


SD = V


SC = 0,   {O, E, N, W, S}

V


DT = V


CT = V


DS = V


CS = 0,   {O, E, N, W, S}
VESF1 = -VNSF2 = -VWSF1 = V

S
SF2 , VETF1 = VNTF2 =-VWTF1 = -VSTF2

VEF1S = -VNF2S = -VWF1S = V
S

F2S , VEF1T = VNF2T =-VWF1T = -VSF2T

VESF2 = VNSF1 = VWSF2 = V
S

SF1 , VETF2 = VNTF1 = VWTF2 = VSTF1 = 0

VEF2S = VNF1S = VWF2S = V
S

F1S , VEF2T = VNF1T = VWF2T = VSF1T = 0
VEDF2 = VNDF1 = -VWDF2 =-V

S
DF1 , VECF2 =-VNCF1 =-VWCF2 = VSCF1

VEF2D = VNF1D = -VWF2D =-V
S

F1D , VEF2C =-VNF1C =-VWF2C = VSF1C

VEDF1 = VNDF2 = VWDF1 = V
S

DF2 , VECF1 = VNCF2 = VWCF1 = VSCF2 = 0

VEF1D = VNF2D = VWF1D = V
S

F2D , VEF1C = VNF2C = VWF1C = VSF2C = 0
VOF1F1 = VOF2F2 = 0
VEF1F1= VNF2F2 = VWF1F1= VSF2F2 , VEF2F2= VNF1F1= VWF2F2= VSF1F1 = 0

V


 F1F2 = V


 F2F1 = 0,   {O,E, N, W, S}

C. The dihedral group D8 with generators r, s

 D The five irreducible representations of D8

REFERENCES

[1] L. Chua and L. Yang, “Cellular Neural Networks: Theory”, IEEE Trans.

on Circuits and Systems, 35(10), pp 1257-1272, 1988.

[2] L. Chua and T. Roska, “Cellular Neural Networks and Visual
Computing”, Cambridge University Press, 2002.

[3] W.J. Ho and C.F. Osborne, “Texture Segmentation using Multi-layered
Backpropagation”, Proc. 1991 Int’l Joint Conference on Neural
Networks, pp. 981-986.

[4] Y. LeCun et al, “Backpropagation Applied to Handwritten Zip Code
Recognition”, Neural Computation 1(4), pp. 541-551, 1989.

[5] A. Blair , and G. Li, “Training of Recurrent internal Symmetry
Networks by Backpropagation”, IEEE Trans on Neural Networks,
Proceedings of the International Joint Conference, 2009. Unpublished

[6] M.Boden, “a guide to recurrent neural network and backpropagation”,
Dallas projecst,SICS Technical Report T2002:03, SICS, 2002

[7] S. Lawrence, C. Lee.Giles, and Ah. Chung.Tsoi, “What size of Neural
Network gives Optimal generalization? Convergence Properties of
Backpropagation”, Technical Report, UMIACS-TR-96-22. and CS-TR-
3617. 1996.

[8] A. Blair, “Learning Position Evaluation for Go with Internal Symmetry
Networks”, Proc. 2008 IEEE Symposium on Computational Intelligence
and Games, pp. 199-204.

[9] J. Elman, “Finding Structure in Time”, Cognitive Science 14(2), pp.
179-211, 1990.

[10] J. Canny, “A Computational Approach to Edge Detection”, IEEE Trans.
Pattern Analysis and Machine Intelligence 8, pp 679-714, 1986..

[11] P. Rodriguez, J. Wiles and J. Elman, “A recurrent neural network that
learns to count”, Connection Science 11(1), pp. 5-40, 1999.

[12] J. Pollack, “The Induction of Dynamical Recognizers”, Machine
Learning 7, pp. 227-252, 1991.

