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Abstract: A new approach is proposed to address the 

subset recognition problem in multiple linear regression, 

where the objective is to recognize a minimal subset of 

predictor variables without sacrificing any explanatory 

power. A parameter stability solution of this approach 

yields a number of informative subsets. To obtain this 

solution, new parameter stability criteria are repeatedly 

used. The subsets generated are compared to ones 

generated by several standard procedures. The results 

suggest that the new approach finds subsets that compare 

favorably against the standard procedures in terms of the 

generally accepted measure: R
2
. 
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1. INTRODUCTION  

A number of studies in the statistical literature discuss 

the problem of selecting (recognizing) the best subset of 

predictor variables in regression. Such studies focus on 

subset selection methodologies, selection criteria, or a 

combination of both. The traditional selection 

methodologies can be enumerative (e.g. all subsets and 

best subsets procedures), sequential (e.g. forward 

selection, backward elimination, stepwise regression, and 

stagewise regression procedures), and screening-based 

(e.g. ridge regression and principal components analysis). 

Standard texts like Draper and Smith [1] and Montgomery 

and Peck [2] provide clear descriptions of these 

methodologies.  

Some of the reasons for using only a subset of the 

available predictor variables (given by Miller [3]) are 

 to estimate or predict at a lower cost by reducing the 

number of variables on which data are to be collected; 

 to predict more accurately by eliminating uninformative 

variables; 

 to describe multivariate data sets parsimoniously; and 

 to estimate regression coefficients with smaller standard 

errors (particularly when some of the predictors are highly 

correlated). 

These objectives are of course not completely compatible. 

Prediction is probably the most common objective, and 

here the range of values of the predictor variables for 

which predictions will be required is important. The 

subset of variables giving the best predictions in some 

sense, averaged over the region covered by the calibration 

data, may be very inferior to other subsets for 

extrapolation beyond this region. For prediction purposes, 

the regression coefficients are not the primary objective, 

and poorly estimated coefficients can sometimes yield 

acceptable predictions. On the other hand, if process 

control is the objective then it is of vital importance to 

know accurately how much change can be expected when 

one of the predictors changes or is changed. 

Suppose that Y, a variable of interest, and X1, ..., Xv, a 

set of potential explanatory variables or predictors, are 

vectors of n observations. The problem of variable 

selection, or subset selection (recognition) as it is often 

called, arises when one wants to model the relationship 

between Y and a subset of X1, ..., Xv, but there is 

uncertainty about which subset to use. Such a situation is 

particularly of interest when v is large and X1, ..., Xv is 

thought to contain many redundant or irrelevant variables. 

The variable selection problem is most familiar in the 

linear regression context, where attention is restricted to 

normal linear models. Letting w index the subsets of X1, 

..., Xv and letting pw be the number of the parameters of 

the model based on the wth subset, the problem is to 

select and fit a model of the form 

 

 Y = Xw w + ,    (1) 

 
where Xw is an n  pw matrix whose columns correspond 

to the wth subset, w is a pw  1 vector of regression coef-

ficients, and ~Nn(0,
2
I). More generally, the variable 

selection problem is a special case of the model selection 

problem where each model under consideration 

corresponds to a distinct subset of X1, ..., Xv. Typically, a 

single model class is simply applied to all possible 

subsets.  

The fundamental developments in variable selection 

seem to have occurred directly in the context of the linear 

model (1). Historically, the focus began with the linear 

model in the 1960s, when the first wave of important 

developments occurred and computing was expensive. 

The focus on the linear model still continues, in part 

because its analytic tractability greatly facilitates insight, 

but also because many problems of interest can be posed 

as linear variable selection problems. For example, for the 

problem of non-parametric function estimation, Y 

represents the values of the unknown function, and X1, ..., 

Xv represent a linear basis, such as a wavelet basis or a 

spline basis.  

One of the fascinating aspects of the variable selection 

problem has been the wide variety of methods that have 

been brought to bear on the problem. Because of space 

limitations, it is of course impossible to even mention 

them all, and so we focus on only a few to illustrate the 

general thrust of developments. An excellent and 

comprehensive treatment of variable selection methods 

prior to 1990 was provided by Miller [3]. As we discuss, 

many promising new approaches have appeared over the 

last decade. 

A distinguishing feature of variable selection 

problems is their enormous size. Even with moderate 

values of v, computing characteristics for all 2
v
 models is 



prohibitively expensive, and some reduction of the model 

space is needed. Focusing on the linear model (1), early 

suggestions based such reductions on the residual sum of 

squares, which provided a partial ordering of the models. 

Taking advantage of the chain structure of subsets, branch 

and bound methods such as the algorithm of Furnival and 

Wilson [4] were proposed to logically eliminate large 

numbers of models from consideration. When feasible, 

attention was often restricted to the "best subsets" of each 

size. Otherwise, reduction was obtained with variants of 

stepwise methods that sequentially add or delete variables 

based on greedy considerations (e.g., Efroymson [5]). 

Even with advances in computing technology, these 

methods continue to be the standard workhorses for 

reduction.  

Once attention was reduced to a manageable set of 

models, criteria were needed for selecting a subset model. 

The earliest developments of such selection criteria, again 

in the linear model context, were based on attempts to 

minimize the mean squared error of prediction. Different 

criteria corresponded to different assumptions about 

which predictor values to use, and whether they were 

fixed or random (see Hocking [6]; Thompson [7] and the 

references therein). Perhaps the most familiar of those 

criteria is the Mallows  

 

 ,2
RSS

2
full

npC w
w

p 

  (2) 

 

where RSSw is the residual sum of squares for the model 

based on the wth subset and 2
full


is the usual unbiased 

estimate of 2
 based on the full model. The standard texts, 

such as Draper and Smith [1], Montgomery and Peck [2] 

and Myers [8], recommend plotting Cp, against p for all 

possible regressions and choosing an equation with low 

Cp or with Cp close to p. If 2
 is known, any model which 

provides unbiased estimates of the regression coefficients, 

i.e. which contains all important regressors, has E(Cp) =p. 

Two of the other most popular criteria, motivated from 

very different viewpoints, are the Akaike information cri-

terion (AIC) and the Bayesian information criterion 

(BIC). Letting wL


 denote the maximum log-likelihood of 

the wth model, AIC selects the model that 

maximizes wL


( pw), whereas BIC selects the model that 

maximizes wL


( (logn)pw/2). Akaike [9] motivated AIC 

from an information theoretic standpoint as the 

minimization of the Kullback-Leibler distance between 

the distributions of Y under the wth model and under the 

true model. To lend further support, an asymptotic 

equivalence of AIC and cross-validation was shown by 

Stone [10]. In contrast, Schwarz [11] motivated BIC from 

a Bayesian standpoint, by showing that it was 

asymptotically equivalent (as n) to selection based on 

Bayes factors. BIC was further justified from a coding 

theory viewpoint by Rissanen [12]. 

Comparisons of the relative merits of AIC and BIC 

based on asymptotic consistency (as n) have 

flourished in the literature. As it turns out, BIC is 

consistent when the true model is fixed (Haughton [13]), 

whereas AIC is consistent if the dimensionality of the true 

model increases with n (at an appropriate rate) (Shibata 

[14]). Stone [15] provided an illuminating discussion of 

these two viewpoints. 

For the linear model (1), many of the popular selection 

criteria are special cases of a penalized sum of squares 

criterion, providing a unified framework for comparisons. 

Assuming 2
 known to avoid complications, this general 

criterion selects the subset model that minimizes 

 

,
RSS

2 w
w cp


 (3) 

 
where c is a preset "parametric dimensionality penalty." 

Intuitively, (3) penalizes RSSw/2
 by c times pw, the 

parametric dimension of the wth model. AIC and 

minimum Cp are essentially equivalent, corresponding to 

c = 2, and BIC is obtained by setting c = logn. By 

imposing a smaller penalty, AIC and minimum Cp will 

select larger models than BIC (unless n is very small). 

Further insight into the choice of c is obtained when 

all of the predictors are orthogonal, in which case (3) 

simply selects all of those predictors with T-statistics t for 

which t
2
 > c. When X1, ..., Xv are in fact all unrelated to Y 

(i.e., the full model regression coefficients are all 0), AIC 

and minimum Cp are clearly too liberal and tend to 

include a large proportion of irrelevant variables. A 

natural conservative choice for c, namely c = 2logv, is 

suggested by the fact that under this null model, the 

expected value of the largest squared T-statistic is 

approximately 2logv when v is large. This choice is the 

risk inflation criterion (RIC) proposed by Foster and 

George [16] and the universal threshold for wavelets 

proposed by Donoho and Johnstone [17]. Both of these 

articles motivate c = 2logv as yielding the smallest 

possible maximum inflation in predictive risk due to 

selection (as v  ), a minimax decision theory stand-

point. Motivated by similar considerations, Tibshirani and 

Knight [18] recently proposed the covariance inflation 

criterion (CIC), a nonparametric method of selection 

based on adjusting the bias of in-sample performance 

estimates. Yet another promising adjustment based on a 

generalized degrees of freedom concept was proposed by 

Ye [19]. 

Many other interesting criteria corresponding to 

different choices of c in (3) have been proposed in the 

literature (see, e.g., Hurvitz and Tsai [20-21]; Rao and 

Wu [22]; Shao [23]; Wei [24]; Zheng and Loh [25] and 

the references therein). One of the drawbacks of using a 

fixed choice of c is that models of a particular size are 

favored; small c favors large models, and large c favors 

small models. Adaptive choices of c to mitigate this 

problem have been recommended by Benjamini and 

Hochberg [26], Clyde and George [27-28], Foster and 

George [16], Johnstone and Silverman [29]. 

An alternative to explicit criteria of the form (3), is 

selection based on predictive error estimates obtained by 

intensive computing methods such as the bootstrap (e.g., 

Efron [30]; Gong [31]) and cross-validation (e.g., Shao 

[32]; Zhang [33]). An interesting variant of these is the 

little bootstrap (Brieman [34]), which estimates the 

predictive error of selected models by mimicking 

replicate data comparison. The little bootstrap compares 



favorably to selection based on minimum Cp or the 

conditional bootstrap, whose performances are seriously 

denigrated by selection bias. 

Another drawback of traditional subset selection 

methods, which is beginning to receive more attention, is 

their instability relative to small changes in the data. Two 

novel alternatives that mitigate some of this instability for 

linear models are the nonnegative garrotte (Brieman [35]) 

and the lasso (Tibshirani [36]). Both of these procedures 

replace the full model least squares criterion by 

constrained optimization criteria. As the constraint is 

tightened, estimates are zeroed out, and a subset model is 

identified and estimated. 

The fully Bayesian approach to variable selection is as 

follows (George [37]). For a given set of models M(1), ..., 

M(2
V
),  where M(w) corresponds to the wth subset of X1, 

..., Xv, one puts priors ((w)|M(w)) on the parameters of 

each M(w) and a prior on the set of models (M(1)), ..., 

(M(2
V
)). Selection is then based on the posterior model 

probabilities (M(w)|Y), which are obtained in principle 

by Bayes's theorem. 

Although this Bayesian approach appears to provide a 

comprehensive solution to the variable selection problem, 

the difficulties of prior specification and posterior compu-

tation are formidable when the set of models is large. 

Even when v is small and subjective considerations are 

not out of the question (Garthwaite and Dickey [38]), 

prior specification requires considerable effort.  

2. CRITERIA FOR RECOGNITION OF SUBSETS  

    OF INFORMATIVE VARIABLES 

Parameter Stability Criterion (PSC). This criterion 

(denoted by PSC) is given by 
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   (4) 

 

where )(RSS wM is the residual sum of squares for the wth 

subset model M(w), which has the number of parameters 

equal to )(wMp , ia


 is an estimate of the parameter ai of 

the model M(w), 
ias represents the estimated standard 

deviation of ia


,  
iai sa 


/ follows the Student distribution 

(T-distribution) with )(wMpnk  degrees of freedom, n 

is the number of observations, tk;  is an upper-tail value 

of the T-statistic at the given significance level , i.e., 

Pr{T> tk; } = .  

According to (4), the best model (subset of 

informative variables) denoted by M

(w) is determined as 
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where the coefficient of determination 2
)(wMR (0  2

)(wMR  

1) for the wth subset model M(w) is computed as 

TSS

RSS
1

)(2
)(

wM
wMR  ,    (7) 

TSS is the total sum of squares.  

This criterion involves the data fit indicator (5) and 

parameter stability indicator (6). It allows one to 

recognize the suitable stable subset model minimizing the 

residual sum of squares. 

Multiplicative Parameter Stability Criterion (MPSC). 

This criterion (denoted by MPSC) is given by 
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According to (8), the best subset model M

(w) is 

determined as 
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This criterion involves the parametrically penalized data 

fit indicator (9) and the parameter stability indicator (10). 

It allows one to recognize the suitable stable subset model 

at a lower cost by reducing the number of variables on 

which data are to be collected. 

Modified Multiplicative Parameter Stability Criterion 

(MMPSC). This criterion (denoted by MMPSC) is given 

by 
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According to (11), the best subset model M

(w) is 

determined as 
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This criterion involves the parametrically penalized data 

fit indicator (9) and parameter stability indicator (10). It 

allows one to recognize the most stable subset model at a 

lower cost by reducing the number of variables on which 

data are to be collected.  

Power Parameter Stability Criterion (PPSC). This 

criterion (denoted by PPSC) is given by 
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According to (15), the best subset model is determined as 
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This criterion involves the parametrically penalized data 

fit indicator (15) and the parameter stability indicator 

(17). It allows one to recognize the suitable stable subset 

model at a lower cost by reducing the number of variables 

on which data are to be collected. 

Modified Power Parameter Stability Criterion 

(MPPSC). This criterion (denoted by MPPSC) is given by 
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According to (8), the best subset model is determined as 
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 (20) 

This criterion involves the penalized data fit indicator (18) 

and the parameter stability indicator (20). It allows one to 

recognize the most stable subset model at a lower cost by 

reducing the number of variables on which data are to be 

collected.  

3. EXAMPLES  

Example 1: Hald cement data. Montgomery and Peck 

[2] (pp. 256-266) illustrated variable selection techniques 

on the Hald cement data and gave several references to 

other analyses. The data are shown in Table 1. 

Table 1. The Hald cement data. 
 

i yi xi1 xi2 xi3 xi4 

1 78.5 7 26 6 60 

2 74.3 1 29 15 52 

3 104.3 11 56 8 20 

4 87.6 11 31 8 47 

5 95.9 7 52 6 33 

6 109.2 11 55 9 22 

7 102.7 3 71 17 6 

8 72.5 1 31 22 44 

9 93.1 2 54 18 22 

10 115.9 21 47 4 26 

11 83.8 1 40 23 34 

12 113.3 11 66 9 12 

13 109.4 10 68 8 12 
 

The used data code is as follows: x1 = amount of 

tricalcium aluminate, x2 = amount of tricalcium cilicate, x3 

= amount of tetracalcium alumino ferrite, x4 = amount of 

dicalcium cilicate; y = heat evolved in calories per gram 

of cement. The response variable is the heat evolved y in a 

cement mix, and the four explanatory variables are 

ingredients in the mix. When a linear model 
 

 443322110 xaxaxaxaay  (21) 
 

is fitted, the residuals show no evidence of any problems. 

But an important feature of these data is that the variables 

x1 and x3 are highly correlated (r13 = - 0.824), as are the 

variables x2 and x4 (with r24 = - 0.973). Thus we would 

expect any subset w of {x1, x2, x3, x4} that includes one 

variable from a highly correlated pair would do as well as 

any subset that also includes the other member.  

MPSC and PPSC select (at the given significance 

level  = 0.05) the subset model )(wM  , which is given 

by 

  22110 xaxaay ,   (22) 

 

where w ={x1,x2} and 3)( wMp . It will be noted that the 

algorithm of Efroymson [5] gives the very same result but 

via more complex way. MMPSC and MPPSC select (at 

the given significance level  = 0.05) the subset model 

)(wM  , where w ={x1,x4} and .3)( wMp It should be 

remarked that the more complex algorithm proposed in 

[39] gives the very same result. PSC final choice is 

)(wM   with w ={x1, x3, x4} and .4)( wMp  

Example 2: Hudson data. The data set (xi,yi), i=1(1)19, 

analyzed here was simulated using the model: 
 

,001.055.01 32
iiiii xxxy      (23) 

 

 

where i, i=1(1)19, are independent and normal with 

mean zero and variance 1. The data taken from [40] are 

presented in Table 2. 



Table 2. The Hudson data. 
 

i xi yi  i xi yi  

1 2 2.84 11 22 7.35 

2 4 5.50 12 24 6.11 

3 6 5.96 13 26 6.67 

4 8 4.50 14 28 9.67 

5 10 6.45 
15 30 7.35 

6 12 7.39 16 32 9.99 

7 14 6.67 17 34 10.31 

8 16 5.72 18 36 12.03 

9 18 7.95 19 38 13.51 

10 20 5.93    
 

Assuming that a model of the data belongs to the class 

of models,  

 

, ... 2
210  k

k xaxaxaay    k1, (24) 

 
the final choice of PSC, MPSC, MMPSC, PPSC and 

MPPSC of the best model is k=3, true degree, i.e.,  

 

.3
3

2
210  xaxaxaay     (25) 

 
It will be noted that Hudson obtained the very same result 

using more complex technique. The Hudson data with the 

best regression curve are shown in Fig. 1. 

 

 

 

Fig. 1  The Hudson data with the best regression curve. 

 

Example 3: Steam data (Draper and Smith [1], App. 

A). The used data code is as follows: x1 = pounds of real 

fatty acid in storage per month, x2 = pounds of crude 

glycerine made,  x3 = average wind velocity in miles per 

hour, x4  = calendar days per month, x5  = operating days 

per month, x6  = days below 32°F, x7 = average 

atmospheric temperature, degrees F, x8  = average wind 

velocity, x9  =  number of startups; y = pounds of steam 

used monthly. 

PSC, MPSC, MMPSC, PPSC and MPPSC select (at 

the given significance level  = 0.05) the subset model 

)(wM   with w ={x2,x3,x7} and 4)( wMp , which fits 

better than  )(wM  with w ={x1,,x7} and 3)( wMp  found 

using the more complex algorithm proposed in [39]. 

Example 4: Simulated data. The data   set  (xi,yi),  i = 

1(1)100  analyzed  here  was simulated using the model: 
 

,3523.0 32
iiiii xxxy      (26) 

 

where, for i=1(1)100, xi=i/100 and i are independent and 

normal with mean zero and variance 0.15
2
. The situation 

is such that the true model is known to belong to the class 

of models given by (24). 

The simulation data are shown, with the true 

regression curve, in Fig. 2. 
 

 

 

Fig. 2  Simulated data set with the true regression curve. 

 

BIC, PSC, MPSC, MMPSC, PPSC and MPPSC choose 

k=3, the true degree. AIC’s final choice is k= 8, a clear 

overfitting. 

4. CONCLUSIONS 

Subset selection in multiple linear regression is a 

problem of great practical importance. There are various 

methods for subset selection and various selection 

criteria. While there is no clear consensus regarding 

which method is the best and which criterion is the most 

appropriate, there is a general agreement an effective 

method is needed. 

Clearly, this paper does not put to rest the question 

about which is the best subset selection method. 

However, the proposed approach has certain advantages. 

First, it quickly produces a reasonable number of subsets 

having the desirable quality. Compared to the standard 

sequential procedures that come up with a single “best” 

model, the proposed approach provides the analyst with a 

set of “best” models lying on the efficient frontier. The 

analyst has the option of comparing these solutions with 

respect to his or her own experience in the specific 

context and also with respect to other statistical criteria. 

Thus, the proposed approach gives the analyst the 

flexibility to pick the best among the best. 

Today, variable selection procedures are an integral 

part of virtually all widely used statistics packages, and 

their use will only increase as the information revolution 

brings us larger datasets with more and more variables. 

The demand for variable selection will be strong, and it 

will continue to be a basic strategy for data analysis. 
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