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Abstract: Since the single-channel framework of image 
restoration possesses serious conceptual and numerical 
problems, in this paper we present a general concept of 
image signal recovering. We also propose a space-variant 
restoration method using sliding spectral transforms. To 
provide image processing in real time, fast recursive 
algorithm for computing the sliding sinusoidal transform 
is utilized. Computer simulation results using a real 
image are provided and discussed. 
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1. INTRODUCTION  
In many applications observed images are often degraded 
owing to atmospheric turbulence, relative motion between 
a scene and a camera, nonuniform illumination, wrong 
focus, etc. Many different restoration techniques (linear, 
nonlinear, iterative, noniterative, deterministic, stochastic, 
etc.) optimized with respect to various criteria have been 
introduced [1]-[8]. The amount of a priori information 
about degradation, i.e., the size or shape of blurs, and the 
noise level, determines how mathematically ill-posed the 
problem is. The blind and nonblind deconvolutions have 
been extensively studied and many techniques have been 
proposed for their solution [3], [4]. They usually involve 
some regularization which assures various statistical 
properties of the image or constrains the estimated image 
and restoration filter according to some assumptions. This 
regularization is required to guarantee a unique solution 
and stability against noise and some model discrepancies. 
One of the most popular fundamental techniques is a 
linear minimum mean square error (LMMSE) method. It 
finds the linear estimate of the ideal image for which the 
mean square error between the estimate and the ideal 
image is minimum. The linear operator acting on the 
observed image to determine the estimate is obtained on 
the basis of a priori second order statistical information 
about the image and noise processes. In the case of 
stationary processes and space-invariant blurs, the 
LMMSE estimator takes the form of the Wiener filter. A 
Kalman filter determines the causal LMMSE estimate 
recursively. It is based on a state-space representation of 
the imaging system, and image data are used to define the 
state vectors. For images with sharp changes of intensity, 
the appropriate regularization is based on variational 
integrals. Minimization of the variational integrals 
preserves edges and fine details in the image and it was 
applied to blind restoration [6]–[8].  
 The objective of this presentation is twofold: we 
propose a general concept of image restoration based on 
an appropriate regularization of variational integrals, and 
then a fast space-variant restoration using sliding discrete 
transform coefficients is suggested. A sliding transform is 
based on the concept of short-time signal processing [9]-
[10]. 

2. GENERAL APPROACH TO IMAGE 
RESTORATION 
The image restoration problem is usually formulated as 
follows. Undistorted (original) image ( , )z ζ η  is 
recovered from the given equation: 
 ( , ) ( , ) ( , ),  Az n q x y n x y v x y+ = + = ,  (1) 
where :A → ( , are metric spaces) is a linear or 
nonlinear operator, z∈ , q∈ , ( , )n x y  is a noise, 

( , )v x y  is an observed distorted image. A general 
approach for image restoration can be formulated using 
statistical estimation methods and the theory of solving of 
ill-posed problems [11]. The restoration problem is a 
typical inverse problem of mathematical physics, and, 
therefore, it can be correctly solved on the base of 
mathematical methods. 

Assume that a method of image restoration to be 
considered is matched to the basic equation (1). So a  
general formulation of the restoration problem can be 
reduced to the following functional minimization: 

* inf ( , )Qz Z
z Az vρ

∈
= , (2) 

where Qρ  is a certain metric in . Note that various 
definitions of a distance Qρ  between two images may be 
used. It is easy to show that the solution of the 
optimization problem (2) is not unique even when the 
operator A and the distorted image q(x,y) are given 
exactly, without noise. We should use a priori 
information about the original image to obtain the unique 
and stable solution from the set of solutions. The simplest 
way to guarantee uniqueness and stability of the solution 
is to describe a priory information about the original 
image by means of a functional ( )zΩ  that possesses 
stabilizing properties [11]. In this case the image 
restoration problem can be reduced to conditional or 
unconditional optimization problem, in particular to the 
Tikhonov’s minimization: 

* inf{ ( , ) ( )}Qz Z
z Az v zρ α

∈
= + Ω , (3) 

where α  is a parameter of regularization. Note that the 
statistical methods used in image restoration lead to 
optimization problems, which are similar to (3). For 
instance, using Bayes’ strategy or MAP test we obtain the 
optimal estimation in the following form: 

*
2 1inf{ ln ( ) ln ( )}

z Z
z p Az v p z

∈
= − − − , (4) 

where p1(z) and 2 ( )p ξ  are a priori probability densities of 
the original image ( , )z ζ η  and additive noise 

( , ) .n x y Az v= −  The main difference between the 
regularization method of image restoration in (3) and the 
statistical method (4) is the existence of the regularization 
parameter α  in (3). This leads to a family of solutions as 



a function of the parameter α . This allows us to control 
the visual quality of image restoration interactively in the 
absence of a mathematical criterion of visual image 
quality. If the space  in (3) is defined as the Euclidian 
space with respect to the norm (q, Bq), where B is a 
positive defined operator, we obtain, 

2* inf{ ( )}
Bz Z

z Az v zα
∈

= − + Ω . (5) 
Usually it is assumed that the original image is a smooth 
function with respect to the Sobolev space, and a 
stabilization functional in (5) is ( ) p

q

q

W
z zΩ = . Quadratic 

forms can be used in order to avoid nonlinear restoration 
algorithms. In particular, the usage of the Gaussian image 
model leads to the minimization of the quadratic form. In 
a discrete case it corresponds to the Sobolev norm for 

2=p  in (5). On the other hand, the use of quadratic 
forms in image restoration brings undesirable results 
because of real images are not Gaussian. 
 Now suppose that images to be restored are functions 
of bounded variations. Therefore, it may be written as 

  * inf { ( , ) ( )}Qz Z
z Az v Var zρ α

∈
= + ,  (6) 

It can be proved that in one-dimensional case when we 
hold fixed one of the variables, an image ],[),( baxxf ∈  
is a function of bounded variation where variation is 

  
1....

1
2

( ) sup ( ) ( )
n

nb

k ka x x k
V f f x f x −

=

= −∑  . (7) 

It can be also shown, that the image ),( yxz , Dyx ∈),(  is 
a function of bounded variation also in the two-dimension 
case. It can be done for common definitions of 
multidimensional variations such as Arzela, Vitali, 
Tonelly and some other variations [12]. A different 
approach was proposed by Kronrod who introduced two 
functionals to characterize an image function of two 
variables. The functionals are given as follows [12]: 

1 0( ) ( )td z m e dt
∞

−∞

= ∫ , 2 1( ) ( )td z m e dt
∞

−∞

= ∫ , (8) 

where a set te  is a t - level of the function  ( , )z x y , i.e. a 
set of points ( , )x y  with values equal to t , 0 ( )tm e  - is the 
number of components of the set te , 1 ( )tm e is the length 
of the set te . The class of functions of bounded variations 
(8) is very extensive. In spite of this, a function of such 
class possesses a lot of good properties: they are 
differentiable almost everywhere, their Fourier series are 
convergent almost everywhere, etc. Note that numerous 
attempts to create a mathematical image model with the 
help of one functional were unsatisfactory. It can be done 
on the base of the two (independent in a certain way) 
functional.  It is interesting to point out, that the first 
variation in (8), is not metric but a topological 
characteristic of an image. If the original image is a 
continuous differentiable function, the second variation 
can be represented as  

 2 ( ) ( , )
gb

a c

d z grad z x y dx dy= ∫ ∫ .  (9)  

If the second variation is used, the restoration can be 
carried out as follows: 

 2* inf { ( , ) }
gb

Bz Z
a c

z Az v grad z x y dx dyα
∈

= − + ∫ ∫ . (10) 

It is of interest to note that a nonlinear method of image 
restoration [13] based on anisotropic diffusion minimizes 
a functional that is identical to the Kronrod’s second 
variation. 
 Image restoration by using a functional minimization 
is a very complicated problem. The problem can be 
simplified by linearization of the used functionals. In this 
case, the Fourier-based techniques are applicable [14]. 
However, since the degraded image is defined on a 
limited area, it does not permit to apply the Fourier 
transform directly. To overcome the problem, additional 
procedures are required to extend the definition of 
degraded images [15]. In section 3, the restoration 
problem in (5) is simplified by image recovering in a 
sliding window. It is assumed that the signal is 
approximately stationary over the window area.  
 
3. IMAGE RESTORATION WITH SLIDING 
TRANSFORMS 
In this section we carry out the space-variant restoration 
using a sliding discrete cosine transform (DCT) 
coefficients. The sliding DCT is based on the concept of 
short-time signal processing [8]. The short-time 
orthogonal transform of a signal zk is defined as 

 ( ),k
s k r r

r

Z z w r sψ
∞

+
=−∞

= ∑ , (11) 

where wr is a window sequence, ψ(r,s) represents the 
basis functions of an orthogonal transform. We use one-
dimensional notation for simplicity. Equation (1) can be 
interpreted as the orthogonal transform of zk+r as viewed 
through the window wr. k

sZ  displays the orthogonal 
transform characteristics of the signal around time k. Note 
that while increased window length and resolution are 
typically beneficial in the spectral analysis of stationary 
data, for time-varying data it is preferable to keep the 
window length sufficiently. Assume that the window has 
finite length around n=0, and it is unity for all r∈[-N1, 
N2]. Here N1 and N2 are integer values. This leads to 
signal processing in a sliding window. In other words, 
local filters in the domain of an orthogonal transform at 
each position of a moving window modify the orthogonal 
transform coefficients of a signal to obtain only an 
estimate of the pixel zk of the window. The choice of 
orthogonal transform for sliding signal processing 
depends on many factors. The DCT is one the most 
appropriate transform with respect to the accuracy of 
power spectrum estimation from the observed data that is 
required for local filtering, the filter design, and 
computational complexity of the filter implementation. 
Linear filtering in the domain of DCT followed by inverse 
transforming is superior to that of the discrete Fourier 
transform (DFT) because a DCT can be considered as the 
DFT of a signal evenly extended outside its edges. This 
consequently attenuates boundary effects caused by 
circular convolution that are typical for linear filtering in 
the domain of DFT. First we define a local criterion of the 
performance of filters for image and signal processing 
and then derive optimal local adaptive filters with respect 
to the criterion. One the most used criterion in signal 



processing is the minimum mean-square error (MMSE). 
Since the processing is carried out in a moving window, 
then for each position of a moving window an estimate of 
the central element of the window is computed. Suppose 
that the signal to be processed is approximately stationary 
within the window. The signal may be distorted by 
sensor’s noise. Let us consider a generalized linear 
filtering of a fragment of input one-dimensional signal 
(for instance for a fixed position of the moving window). 
Let z=[zk] be undistorted real signal, v=[vk] be an observed 
signal, k=1,…, N, N be the size of the fragment, U be the 
matrix of the discrete cosine transform, E{.} be the 
expected value, superscript T denotes the  transpose. Let 

v=z H  be a linear estimate of the undistorted signal, 
which minimizes the MMSE averaged over the window 
 ( ) ( ){ }TMMSE E N= z- z z- z . (12) 

The optimal filter for this problem is the Wiener filter [1]: 

 { } { } 1T TE E
−

⎡ ⎤= ⎣ ⎦H z v vv . (13) 

Let us consider the known model of signal: 
 ,k k l l l

l
v a z n= +∑ , (14) 

where A=[ak,l] is a distortion matrix, n=[nk] is additive 
noise with zero mean, k,l=1,…N, N is the size of 
fragment. The optimal filter is given by 
 

1T T
zz nn

−
⎡ ⎤= +⎣ ⎦zzH K A AK A K , (15) 

where { } { } { }   0T T T
zz nnE E E= = =K zz , K nn , zn  are 

the covariance matrices. It is assumed that an input signal 
and noise are uncorrelated. The obtained optimal filter is 
based on an assumption that an input signal within the 
window is stationary. The result of filtering is the restored 
window signal. This corresponds to signal processing in 
nonoverlapping fragments. Now suppose that the signal is 
processed in a moving window in the domain of the 
sliding DCT. For each position of the window an estimate 
of the central pixel should be computed. Using the 
equation for inverse sliding DCT presented in the 
previous section, the pointwise MSE for reconstruction of 
the central element of the window can be written as 
follows: 

( ) ( ) ( ){ } ( ) ( ) ( )( )
2

2

1

N

l
PMSE k E z k z k E l Z l Z lα

=

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= − = −⎨ ⎬⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∑ ,(16) 

where ( ) ( ) ( )Z l H l V l⎡ ⎤= =⎣ ⎦Z  is a vector of signal 

estimate in the domain of the DCT, ( )HU H l⎡ ⎤= ⎣ ⎦  is a 

diagonal matrix of the scalar filter, ( ) lα⎡ ⎤= ⎣ ⎦α  is a 
diagonal matrix of the coefficients of inverse sliding 
cosine transform [10]. Minimizing (16), we obtain 
 [ ] 1

U vv zv α
−

=H P P I . (17) 

where ( ) ( ){ } ( ) ( ){ } zv zzE Z l V k E V l V k⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦P , P , Iα 

is the identity matrix of the dimension of α. Note that 
matrix of coefficients ( ) lα⎡ ⎤= ⎣ ⎦α  for the inverse sliding 
transform is singular. The inverse sliding cosine transform  
possesses the dimension of the matrix twice less than the 
size of the window signal. Therefore, the computational 
complexity of the scalar filters in (17) and signal 

processing can be significantly reduced comparing to the 
complexity for the filter in (15). For the model of signal 
distortion in (14) the filter matrix is given as  

 ( ) 1T T T T
U nn zz α

−
⎡ ⎤= +⎣ ⎦zzH U AK A K U U K A U I . (18) 

If a signal has a high correlation coefficient and a 
smoothed version of the signal is corrupted by additive, 
weakly-correlated noise, then the matrix 
( )T T

zz nn+U WK W K U  is close to diagonal. The linear 

convolution between a signal x and the matrix T
zzK A  in 

the domain of the sliding DCT can be well approximated 
by a diagonal matrix ( )Diag T T

zz aUK A U I V . Therefore, 
the matrix of the scalar filter in (18) is close to diagonal, 
and the filter can be written as 

 ( ) ( )
( ) ( )

1

2 nn

P l
H l

P l P l
≈

+
, (19) 

where ( ) ( ) ( )1 2  , , nnP l P l P l  are diagonal elements of the 

following matrices T T
zz αU K A U I , TT

zzU AK A U , 
T

nnU K U ,  l=1,…N1, N1 is the dimension of the matrix 
Iα. For the design of local adaptive filters in the domain of 
a sliding DCT the covariance matrices and power spectra 
of fragments of a signal are required. Since they are often 
unknown, in practice, these matrices can be estimated 
from observed signals [1], [9]. Next, computer simulation 
results for local adaptive restoration of images degraded 
by nonuniform motion blur is presented [16]. Assume that 
the blur is owing to horizontal relative motion between 
the camera and the image, and it is approximately space-
invariant within local regions of the image. It is known 
that point spread functions for motion and focus blurs do 
have zeros in the frequency domain, and they can be 
uniquely identified by the location of these zero crossings 
[2]. We assume also that the observation noise is a zero-
mean, white Gaussian process that is uncorrelated to the 
image signal. In this case, the noise field is completely 
characterized by its variance, which is commonly 
estimated by the sample variance computed over a low-
contrast local region of the observed image. A real test 
aerial image is shown in Fig. 1(a). The size of image is 
256x256, each pixel has 256 levels of quantization. The 
signal range is [0, 1]. The image quadrants are degraded 
by sliding 1D horizontal averaging with the following 
sizes of the moving window: 4, 3, 4, and 2 pixels (for 
quadrants from left to right, from top to bottom). The 
image is also corrupted by zero-mean additive white 
Gaussian noise. The degraded image with the noise 
standard deviation of 0.05 is shown in Fig. 1(b). Since 
there exists a difference in spectral distributions of the 
image signal and wide-band noise, the power spectrum of 
noise can be easily measured from the experimental 
covariance matrix. In our tests the window length of 
15x15 pixels is used. The results of image restoration by 
the global parametric Wiener filtering [1] and the 
proposed method are shown in Figs. 1(c) and 1(d), 
respectively. Figs. 1(e) and 1(f) show a difference of the 
original image with the image restored by global Wiener 
algorithm, and the image restored with proposed 
algorithm, respectively. 
 



      
 (a) (b) 

      
 (c) (d) 

      
 (e) (f) 
Fig. 1. (a) Test image, (b) space-variant degraded test image, 
(c) global Wiener restoration, (d) local adaptive restoration 
in domain of sliding DCT, (e) difference between the original 
image and restored by global Wiener algorithm, (f) 
difference between the original image and restored by 
proposed algorithm. 
 
We see that the proposed algorithm is capable to perform 
a good space-variant image restoration and noise 
suppression. Finally, we investigate the robustness of the 
tested restoration techniques to additive noise. The 
performance of the global parametric Wiener filtering and 
the local adaptive filtering is shown in Fig. 2. 
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Fig. 2. Performance of the restoration algorithms in terms of 
MSE versus the standard deviation of additive noise. 

5. CONCLUSION 
In this paper, we presented a general concept of image 

restoration based on an appropriate regularization of 
variational integrals as well as an approximated solution 
of the restoration problem using local adaptive image 
processing. The PMSE estimator in the domain of sliding 

DCT is derived. To provide image processing at high rate, 
a fast recursive algorithm for computing the sliding DCT 
was utilized. Extensive testing using various parameters 
of degradations has shown that the original image can be 
well restored by proper choice of the algorithm 
parameters.  
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