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Abstract: The paper deals with the method of extracting 
fuzzy classification rules based a heuristic method of 
possibilistic clustering. The description of basic concepts 
of the direct possibilistic clustering algorithm based on 
the concept of allotment among fuzzy cluster is provided. 
A general plan of the clustering procedure is given. A 
method of constructing of fuzzy rules based on clustering 
results is proposed. An illustrative example of the 
method’s application to the Anderson’s Iris data is 
carried out. An analysis of the experimental results is 
given and preliminary conclusions are formulated. 
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1. PRELIMINARIES  
Any system can be described through the existing 

relations between its input variables and its output 
variables. To identify such relations, a functional input-
output description may be not available in the case of 
complex processes. The use of fuzzy models has been 
shown to be successful. So, the problem of generation of 
fuzzy rules is one of more than important problems in the 
development of fuzzy models. 

There are a number of approaches to learning fuzzy 
rules from data based on methods neural or evolutionary 
computation. Moreover, fuzzy classification rules can be 
obtained from fuzzy clustering results. In general, a fuzzy 
clustering algorithm aims at minimizing the objective 
function [1] 
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where m
nxxX ℜ⊆= },,{ 1   is the data set, c  is the 

number of fuzzy clusters lA , cl ,,1=  in the fuzzy c -
partition P , ]1,0[∈liυ  is the membership degree of 

object ix  to fuzzy cluster lA , ml ℜ⊆τ  is the prototype 

for fuzzy cluster lA , ),( l
ixd τ  is the distance between 

prototype lτ  and object ix , and the parameter 1>γ  is 
the fuzziness index. The selection of the value of γ  
determines whether the cluster tend to be more crisp or 

fuzzy. Membership degrees can be calculated as 
following  
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and prototypes can be obtained from the formula 
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Equations (4) and (5) are necessary conditions for (1) 
to have a local minimum. However, the condition (3) is 
hard from essential positions. So, a possibilistic approach 
to clustering was proposed in [2]. In particular, the 
objective function (1) is replaced by 
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under the constraint of possibilistic partition 
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where c  is the number of fuzzy clusters lA , cl ,,1=  
in the possibilistic partition Υ , ]1,0[∈liµ  is the 
possibilistic memberships which are typicality degrees, 

ml ℜ⊆τ  is the prototype for fuzzy cluster lA , ),( l
ixd τ  

is the distance between prototype lτ  and object ix , and 
the parameter 1>ψ  is the analog of the fuzziness index. 

Typicality degrees can be calculated as following  
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and the parameters are estimated by  
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where 1=K . 

The principal idea of extracting fuzzy classification 
rules based on fuzzy clustering is the following [3]. Each 
fuzzy cluster is assumed to be assigned to one class for 
classification and the membership grades of the data to 
the clusters determine the degree to which they can be 
classified as a member of the corresponding class. So, 



with a fuzzy cluster that is assigned to the some class we 
can associate a linguistic rule. The fuzzy cluster is 
projected into each single dimension leading to a fuzzy 
set on the real numbers. From a mathematical position the 
membership degree of the value tx̂  to the t th projection 

)ˆ( t
B xt

l
γ  of the fuzzy cluster lA , },,1{ cl ∈  is the 

supremum over the membership degrees of all vectors 
with tx̂  as t th component to the fuzzy cluster, i.e.  
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in the possibilistic case [3]. An approximation of the 
fuzzy set by projecting only the data set and computing 
the convex hull of this projected fuzzy set or 
approximating it by a trapezoidal or triangular 
membership function is used for the rules obtaining [3]. 

Objective function-based fuzzy clustering algorithms 
are the most widespread methods in fuzzy clustering [1]. 
Objective function-based fuzzy clustering algorithms are 
sensitive to initial partition selection and fuzzy rules 
depend on the selection of the fuzzy clustering method. In 
particular, the GG-algorithm and the GK-algorithm of 
fuzzy clustering are recommended in [3] for fuzzy rules 
generation.  

Heuristic algorithms of fuzzy clustering display low 
level of a complexity. An outline for a new heuristic 
method of possibilistic clustering was presented in [4], 
where a basic version of direct possibilistic clustering 
algorithm was described and the version of the algorithm 
is called the D-AFC(c)-algorithm [5]. The D-AFC(c)-
algorithm can be considered as a direct algorithm of 
possibilistic clustering. The fact was demonstrated in [5]. 

The main goal of the paper is a preliminary 
consideration of the method of fuzzy rules extraction 
based on the clustering results obtained from the D-
AFC(c)-algorithm. The contents of this paper is as 
follows: in the second section basic concepts of the 
possibilistic clustering method based on the concept of 
allotment among fuzzy clusters are outlined, in the third 
section a method of constructing of fuzzy rules from 
clustering results is proposed, in the fourth section an 
illustrative example of deriving of fuzzy rules from the 
Anderson’s Iris data are given, in the fifth section the 
experimental results are discussed and preliminary 
conclusions are stated. 

2. THE D-AFC(c)-ALGORITHM 
Let us remind the basic concepts and the plan of the 

D-AFC(c)-algorithm. The structure of the set of objects 

can be described by some fuzzy tolerance, that is – a 
fuzzy binary symmetric reflexive intransitive relation. 
The notions of powerful fuzzy tolerance, feeble fuzzy 
tolerance and strict feeble fuzzy tolerance were 
considered in [3], as well. However, the essence of the 
method here considered does not depend on the kind of 
fuzzy tolerance. That is why the method herein is 
described for any fuzzy tolerance T . 

Let },...,{ 1 nxxX =  be the initial set of objects. Let T  
be a fuzzy tolerance on X  with 

Xxxxx jijiT ∈∀∈ ,],1,0[),(
1

µ  being its membership 
function and α  be the α -level value of T , ]1,0(∈α . 
Columns or lines of the fuzzy tolerance matrix are fuzzy 
sets },...,{ 1 nAA . Let },...,{ 1 nAA  be fuzzy sets on X , 
which are generated by a fuzzy tolerance T . The α -level 
fuzzy set { }XxxxxA iiAiAi

l
ll ∈≥= ,)(|))(,()( αµµα  is 

fuzzy α -cluster or, simply, fuzzy cluster. So, ll AA ⊆)(α , 

]1,0(∈α , },,{ 1 nl AAA ∈  and liµ  is the membership 
degree of the element Xxi ∈  for some fuzzy cluster 

lA )(α , ]1,0(∈α , ],1[ nl∈ . Value of α  is the tolerance 
threshold of fuzzy clusters elements. 

The membership degree of the element Xxi ∈  for 

some fuzzy cluster lA )(α , ]1,0(∈α , ],1[ nl∈  can be 
defined as a 
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where an α -level })(|{ αµα ≥∈= iAi
l xXxA l , ]1,0(∈α  

of a fuzzy set lA  is the support of the fuzzy cluster lA )(α .  
The value of a membership function of each element 

of the fuzzy cluster is the degree of similarity of the 
object to some typical object of fuzzy cluster. Moreover, 
membership degree defines a possibility distribution 
function for some fuzzy cluster lA )(α , ]1,0(∈α , and the 
possibility distribution function is denoted by )( il xπ . 
Notable that the number c  of fuzzy clusters can be equal 
the number of objects, n .  

Let T  is a fuzzy tolerance on X , where X  is the set 
of elements, and },...,{ )(

1
)(

nAA αα  is the family of fuzzy 

clusters for someα . The point ll
e Aατ ∈ , for which  

lix

l
e

i

µτ maxarg= , l
i Ax α∈∀  (13) 

is called a typical point of the fuzzy cluster lA )(α , 
]1,0(∈α , ],1[ nl∈ . Obviously, a fuzzy cluster can have 

several typical points. That is why symbol e  is the index 
of the typical point. A set },,{)( 1)(

l
l

llAK ττα =  of typical 

points of the fuzzy cluster lA )(α  is a kernel of the fuzzy 

cluster and ( ) lAKcard l =)( )(α  is a cardinality of the 



kernel. Obviously, if the fuzzy cluster have an unique 
typical point, then 1=l .  

Let }2,,1|{)( )( ncclAXR l
z ≤≤== α
α  be a family of 

fuzzy clusters for some value of tolerance threshold α , 
which are generated by some fuzzy tolerance T  on the 
initial set of elements },...,{ 1 nxxX = . If condition  

0
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is met for all lA )(α , cl ,1= , nc ≤ , then the family is the 
allotment of elements of the set },...,{ 1 nxxX =  among 

fuzzy clusters }2,,1,{ )( ncclAl ≤≤=α  for some value of 
the tolerance threshold α . It should be noted that several 
allotments )(XRz

α  can exist for some tolerance threshold 
α . That is why symbol z  is the index of an allotment.  

The allotment among fuzzy clusters can be considered 
as the possibilistic partition and fuzzy clusters in the sense 
of the expression (12) are elements of the possibilistic 
partition. However, the concept of allotment will be used 
in further considerations. The next concept introduced 
should be paid attention to, as well.  

Allotment ]}1,0(,,1|{)( )( ∈== αα
α nlAXR l
I  of the 

set of objects among n  fuzzy clusters for some threshold 
α  is the initial allotment of the set },...,{ 1 nxxX = . In 
other words, if initial data are represented by a matrix of 
some fuzzy T  then lines or columns of the matrix are 
fuzzy sets XAl ⊆ , nl ,1=  and level fuzzy sets lA )(α , 

nl ,1= , ]1,0(∈α  are fuzzy clusters. These fuzzy clusters 
constitute an initial allotment for some tolerance threshold 
and they can be considered as clustering components. 

If some allotment },,1|{)( )( ncclAXR l
z ≤== α
α  

corresponds to the formulation of a concrete problem, 
then this allotment is an adequate allotment. In particular, 
if condition 
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α ∈∀ , 

]1,0(∈α , cXRcard z =))(( α , 
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and condition 

0)( =∩ ml AAcard αα , ml AA )()( , αα∀ , ml ≠ ,  (16) 

are met for all fuzzy clusters lA )(α , cl ,1=  of some 

allotment },,1|{)( )( ncclAXR l
z ≤== α
α  then the 

allotment is the allotment among particularly separate 
fuzzy clusters and },,0{ nw =  is the maximum number 
of elements in the intersection area of different fuzzy 
clusters. If 0=w  in conditions (15) and (16) then the 
allotment is the allotment among fully separate fuzzy 
clusters. 

The adequate allotment )(XRz
α  for some value of 

tolerance threshold ]1,0(∈α  is a family of fuzzy clusters 

which are elements of the initial allotment )(XRI
α  for the 

value of α  and the family of fuzzy clusters should satisfy 
the conditions (15) and (16). Several adequate allotments 
can exist. Thus, the problem consists in the selection of 
the unique adequate allotment )(XR∗  from the set B  of 

adequate allotments, )}({ XRB z
α= , which is the class of 

possible solutions of the concrete classification problem 
and )}({ XRB z

α=  depends on the parameters the 
classification problem. The selection of the unique 
adequate allotment )(XR∗  from the set )}({ XRB z

α=  of 
adequate allotments must be made on the basis of 
evaluation of allotments. The criterion 
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where c  is the number of fuzzy clusters in the allotment 
)(XRz

α  and )(),( )( XRAAcardn z
ll

l
α

αα ∈=  is the number 

of elements in the support of the fuzzy cluster lA )(α , can 
be used for evaluation of allotments. 

Maximum of criterion (17) corresponds to the best 
allotment of objects among c  fuzzy clusters. So, the 
classification problem can be characterized formally as 
determination of the solution )(XR∗  satisfying 

)),((maxarg)(
)(

αα
α

XRFXR z
BXRz ∈

∗ = , (18) 

where )}({ XRB z
α=  is the set of adequate allotments 

corresponding to the formulation of a concrete 
classification problem. 

Thus, the problem of cluster analysis can be defined in 
general as the problem of discovering the unique 
allotment )(XR∗ , resulting from the classification 
process and detection of fixed c  number of fuzzy clusters 
can be considered as the aim of classification. So, the 
adequate allotment )(XRz

α  is any allotment among c  
fuzzy clusters in the case. There is a seven-step procedure 
of classification: 

 
1. Calculate α -level values of the fuzzy tolerance T  

and construct the sequence 
10 0 ≤<<<<< Zααα    of α -levels; let 

1:= ;  
2. Construct the initial allotment 

},1|{)( )( nlAXR l
I == α
α  for every value α  from 

the sequence 10 0 ≤<<<<< Zααα   ; 
3. Let 0:=w ; 
4. Construct allotments },,1|{)( )( ncclAXR l

z ≤== α
α , 

αα =  which satisfy conditions (15) and (16) for 
every value α  from the sequence 

10 0 ≤<<<<< Zααα   ; 
5. Construct the class of possible solutions of the 



classification problem )}({)( XRcB z
α= , 

},,{ 1 Zααα ∈  for the given number of fuzzy 
clusters c  and different values of the tolerance 
threshold α  as follows: 
if for some allotment },,{),( 1 Zz XR αααα ∈  the 

condition cXRcard z =))(( α  is met 

then )()( cBXRz ∈α  
else let 1: += ww  and go to step 4; 

6. Calculate the value of the criterion (17) for every 
allotment )()( cBXRz ∈α ; 

7. The result )(XR∗  of classification is formed as 
follows: 
if for some unique allotment )(XRz

α  from the set 
)(cB  the condition (18) is met 

then the allotment is the result of classification; let 
1: +=   and go to step 2 

else the number c  of classes is suboptimal.  
 
The allotment },1|{)( )( clAXR l ==∗

α  among the 
given number of fuzzy clusters and the corresponding 
value of tolerance threshold α  are the results of 
classification. 

3. A TECHNIQUE OF RULES GENERATION  
Mamdani’s [6] rule l  within the fuzzy inference 

system is written as follows: 
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(19) 

where cl ,,1=  is the number of rules and classes, m  is 
the number of attributes, and t

lB , },,1{ mt ∈  and l
lC , 

},,1{ cl ∈  are fuzzy sets that define an input and output 

space partitioning. Let t
lB  be characterized by the 

membership function )ˆ( t
B xt

l
γ . The membership function 

can be triangular, Gaussian, trapezoidal, or any other type.  

Fig. 1 – Trapezoidal fuzzy set defined by four parameters 

In this paper, we consider trapezoidal and triangular 
membership functions. A trapezoidal fuzzy set is 

presented in Fig. 1 and the fuzzy set can be defined by 
four parameters, ),,,( )()()()(

t
l

t
l

t
l

t
l

t
l ammaB = . A triangular 

fuzzy set ),,( )()()(
t
l

t
l

t
l

t
l amaB =  can be considered as a 

particular case of the trapezoidal fuzzy set where 
t
l

t
l mm )()( = . 

The idea of deriving fuzzy rules from fuzzy clusters is 
the following. We apply the D-AFC(c)-algorithm to the 
given data and then obtain for each fuzzy cluster lA )(α , 

},,1{ cl ∈  a kernel )( )(
lAK α  and a support lAα . The 

value of tolerance threshold ]1,0(∈α , which corresponds 

to the allotment },,{)( )(
1

)(
cAAXR αα =∗ , is the additional 

result of classification. We calculate the interval 
]ˆ,ˆ[ max)(min)(

t
l

t
l xx  of values of every attribute tx̂ , 

},,1{ mt ∈  for the support lAα . The value t
lx min)(ˆ , 

},,1{ mt ∈  can be obtained as follows 

t

Ax

t
l xx

l
i

ˆminˆ min)(
α∈

= , },,1{ mt ∈∀ , },,1{ cl ∈∀ , (20) 

and the value t
lx max)(ˆ , },,1{ mt ∈  can be calculated 

using a formula 
t

Ax

t
l xx

l
i

ˆmaxˆ max)(
α∈

= , },,1{ mt ∈∀ , },,1{ cl ∈∀ . (21) 

The parameter t
la )(  can be obtained as following  

)1()ˆ( min)( αγ −=t
lB xt

l
, 0)( )( =t

lB at
l

γ , (22) 

and the parameter t
la )(  can be obtained from the 

conditions 

)1()ˆ( max)( αγ −=t
lB xt

l
, 0)( )( =t

lB at
l

γ . (23) 

We calculate the value t
lx )(ˆ  for all typical points 

)( )(
ll

e AK ατ ∈  of the fuzzy cluster lA )(α , },,1{ cl ∈  as 
follows: 

t

AK

t
l xx

ll
e

ˆminˆ
)()(

)(ατ ∈
= , },,1{ le ∈∀ , (24) 

and the value t
lx )(

ˆ  can be obtained from the equation 

t

AK

t
l xx
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e

ˆmaxˆ
)(

)(
)(ατ ∈

= , },,1{ le ∈∀ , (25) 

Thus, the parameter t
lm )(  can be calculated from the 

conditions 

)()ˆ( )()(
lt

lB Ahxt
l

αγ = , 1)( )( =t
lB mt

l
γ , (26) 

and the parameter t
lm )(  can be obtained as following 

)()ˆ( )()(
lt

lB Ahxt
l

αγ = , 1)( )( =t
lB mt

l
γ , (27) 



where )(sup)(
)(

)( iA
Ax

l xAh l
l

i
α

α

µα
∈

=  is the height of the lA )(α . 

Fuzzy sets l
lC , cl ,,1=  can be defined on the 

interval of memberships ]1,0[  and these fuzzy sets can be 

ordered as follows: l
c

ll CCC  21 . Fuzzy sets lC1  

and l
cC  can be labeled as a low membership and a high 

membership, and 1)( 1
1

=ylCγ  for )]1(,0[1 α−∈y  and 

1)( =cC yl
c

γ  for ]1,[α∈cy . Membership functions of 

other )2( −c  fuzzy sets l
c

l CC 12 ,, −  can be constructed as 
follows: the interval ]),1[( αα−  must be divided into 

)1( −c  equal subintervals and parameters l
l

l
l

l
l ama )()()( ,, , 

}1,,2{ −∈ cl   of triangular fuzzy sets l
c

l CC 12 ,, −  can 
be determined. 

4. AN ILLUSTRATIVE EXAMPLE 
The Anderson's Iris data set consists of the sepal 

length, sepal width, petal length and petal width for 150 
irises [7]. The Anderson’s Iris data forms the matrix of 
attributes ]ˆ[1504

t
ixX =× , 150,,1=i , 4,,1=t , where 

the sepal length is denoted by 1x̂ , sepal width is denoted 
by 2x̂ , petal length is denoted by 3x̂  and petal width is 
denoted by 4x̂ .  

Results of applications of the D-AFC(c)-algorithm to 
the Anderson's Iris data for different distance are 
summarized in Table 1.  

Table 1. Results of applications of the D-AFC(c)-algorithm 
to the Anderson's Iris data for different distances 

 
A distance 

Main characteristics of the result 
of classification 

The value α  Misclassifications 
The normalized 

Hamming distance 
0.8192 14 

The normalized 
Euclidean distance 

0.8104 6 

The squared 
normalized 

Euclidean distance 

 
0.9642 

 
6 

 
The squared normalized Euclidean distance was 

selected for the data preprocessing. By executing the D-
AFC(c)-algorithm for three classes, we obtain that the 
allotment )(XR∗ , which is corresponds to the result, was 
obtained for the tolerance threshold 0.9642=α . Six 
misclassified objects were obtained. The ninety-fifth 
object is the typical point 1τ  of the fuzzy cluster which 
corresponds to the first class, the ninety-eighth object is 
the typical point 2τ  of the second fuzzy cluster, and the 
seventy-third object is the typical point 3τ  of the third 
fuzzy cluster. The height of each fuzzy cluster 

)()( XRAl ∗∈α  is equal one. So, membership functions for 

fuzzy sets t
lB  and l

lC , 4,,1=t , 3,,1=l , can be 
constructed immediately. Antecedents of fuzzy rules are 
presented on Fig. 2 and membership functions of fuzzy 
sets corresponding to outputs are presented on Fig. 3. 

sl1 sw1 pl1 pw1 

    
(4.274, 5, 5.83) (2.259, 3.4, 4.437) (0.9814, 1.5, 1.915) (0.0962, 0.2, 0.6148) 

sl2 sw2 pl2 pw2 

    
(4.878, 5.5, 7.056) (1.985, 2.4, 3.437) (2.974, 3.7, 5.152) (1, 1, 1.622) 

sl3 sw3 pl3 pw3 

    
(5.523, 7.7, 7.907) (2.481, 3, 3.83) (4.752, 6.1, 6.93) (1.574, 2.3, 2.507) 

Fig. 2 – Fuzzy sets corresponding to input variables of fuzzy rules 

 



low average high 

   
(0, 0, 0.0358, 0.5) (0.0358, 0.5, 0.9642) (0.5, 0.9642, 1, 1) 

Fig. 3 – Fuzzy sets corresponding to output variables of fuzzy rules 

 
So, three fuzzy rules can be constructed. These fuzzy 

rules are presented in Table 2. The allotment is the 
allotment among fully separate fuzzy clusters. That is 
why a fuzzy set ‘high’ is used for output variables of 
fuzzy rules for corresponding classes. 

Table 2. Fuzzy rules obtained from fuzzy clusters 

Rule Antecedents Consequents 
1x̂  2x̂  3x̂  4x̂  1 2 3 

1 sl1 sw1 pl1 pw2 high   
2 sl2 sw2 pl2 pw2  high  
3 sl3 sw3 pl3 pw3   high 

 
The Anderson’s data were classified using the 

Mamdani’s fuzzy inference system. The rules classify 
four objects incorrectly and two objects are rejected. 

Notable that the fuzzy rules obtained using the D-
AFC(c)-algorithm can be interpreted very simply, because 
membership functions of fuzzy sets which correspond to 
input variables of fuzzy rules has natural interpretations. 
So, the results obtained from the fuzzy inference system 
are corresponding to previous profound interpretation. 
Evidently, that the results are correlated with the results, 
obtained from the D-AFC(c)-algorithm. 

From other hand, the results of classification are 
presented in [1] where eight fuzzy rules were generated 
from fuzzy clusters of the simplified version of the GG-
algorithm of fuzzy clustering. The rules classify three 
objects incorrectly and three more were not classified at 
all. 

5. CONCLUSIONS 
The D-AFC(c)-algorithm is a precise and effective 

numerical procedure for solving classification problems. 
The results of application of the clustering method based 
on the allotment concept can be very well interpreted and 
the clustering results are stable because the D-AFC(c)-
algorithm depending on the set )}({)( XRcB z

α=  of 
possible solutions of the classification problem.  

An approach to deriving fuzzy rules from fuzzy 
clusters obtained from the D-AFC(c)-algorithm is 
outlined in the paper. The approach is a way of a rapid 
prototyping of a fuzzy model using fuzzy clustering. In 
the context, the note rapid prototyping means being able 
to obtain an appropriate collection of fuzzy classification 
rules that can be considered as a first approximation to the 
fuzzy inference system.  

The test of the fuzzy inference system based on the 
clustering of the Anderson’s Iris data using D-AFC(c)-
algorithm shows an effectiveness of the proposed 

approach in comparison with the traditional approach 
based on the fuzzy clustering algorithms application. 
Moreover, the D-AFC(c)-algorithm can be applied to the 
three-way data clustering problem very simply [8]. So, the 
proposed approach can be extended for a case of the 
three-way data immediately.  
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