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Abstract: In this paper the fullest conception of the 
probabilistically combinatorial approach has been 
presented. This conception is the result of previous long 
preliminary works. The approach gives the possibility to 
establish the reasons of algorithms overtraining, to define 
the possible ways of it reduction and to build the most 
precise estimates of the recognition probability. The 
combinatorial approach works with determined data of 
the recognition process and the probabilistic one 
determines the probability of these results existence. The 
most usefulness of the combinatorial approach consists in 
the possibility to determine the effect of the training set 
variation on the different algorithms and select the most 
appropriate one from these algorithms or algorithm 
composition. The probabilistic part of this approach 
determines the probability of results, obtained on the 
basis of combinatorial approach. 

Keywords: Overtraining, probabilistically combinatorial 
approach, training set, classification algorithms, true 
(false) objects. 

1. INTRODUCTION  
Among all classification algorithms the most 

interesting and important for the research are the 
algorithms, using training. These algorithms are the target 
of the Machine Learning Theory (MLT) that has been 
successfully developed during last ten years [1]. This 
theory considers such important problems as optimal 
composition of the training set definition, classifiers 
training and optimal classifiers composition making, the 
most informative feature selection procedure, etc. The 
algorithms that can more or less solve these tasks named 
as Bagging, Boosting and Random Space Method (RSM). 
The analysis of these algorithms determines one mutual 
feature of them. All these algorithms oriented on the 
informativity increasing of the training data (the optimal 
training set definition and the most informative feature 
selection) and overindulgence (complexity) of the 
classification algorithms decreasing. All these approaches 
have been oriented on classification algorithm 
overtraining (overfitting) minimization and reaching the 
minimal rate of the recognition error. 

Also the most important task is to determine all these 
optimal parameters, when the training set is small. For 
example if the error probability is 210−  and the reliability 
of determination of this probability is 310−  then according 
to the Vapnik-Chervonenkis theory the training set have 
to be of 35539 elements [2]. There is no possibility (in the 
most of cases) to obtain the training set of such size in 
practice. That is why it is extremely important to develop 
these approaches. The idea of such type approaches 
consists in additional information reception about the 
objects and their relations. In this paper we propose some 
of them. 

2. SOME IMPORTANT TASKS OF MACHINE 
LEARNING THEORY  

The modern theory of machine learning has two vital 
problems: to obtain precise upper bound estimates of the 
overtraining (overfitting) and ways of it overcoming. 
Now the most precise familiar estimates are still very 
overrated. So the problem is open for now. It is 
experimentally determined the main reasons of the 
overestimation. By the influence reducing they are as 
follow: 
1. The neglect of the stratification effect or the effect of 

localization of the algorithms composition. The 
problem is conditioned by the fact that really works 
not all the composition but only part of it subject to 
the task. The overestimation coefficient is from 
several tens to hundreds of thousands. 

2. The neglect of the algorithms similarity. The 
overestimation coefficient for this factor is from 
several hundreds to tens of thousands. This factor is 
always essential and less dependent from the task than 
first one. 

3.  The exponential approximation of the distribution tail 
area. In this case the overestimation coefficient can be 
several tens; 

4. The upper bound estimation of the variety profile has 
been presented by the one scalar variety coefficient. 
The overestimation coefficient is often can be taken as 
one but sometimes it can be several tens. 
The reason of overtraining effect has been conditioned 

by the usage of an algorithm with minimal number of 
errors on the training set. This means that we realize the 
one-sided algorithms tuning. The more algorithms are 
going to be used the more overtraining will be. It is true 
for the algorithms, taken from the distribution randomly 
and independently. In case of algorithm dependence (as 
rule in reality they are dependent) it is suggested that the 
overtraining will be reduced. The overtraining can be in 
situation if we use only one algorithm from the 
composition of two algorithms. Stratification of the 
algorithms by the error number and their similarity 
increasing reduces the overtraining probability.  

Let consider a duplet algorithm-set. Every algorithm 
can cover a definite number of the objects from the 
training set. If one uses internal criteria [3] (for example 
in case of metrical classifiers) there is the possibility to 
estimate the stability of such coverage. Also we can 
reduce the number of covered objects according to the 
stability level. To cover more objects we need more 
algorithms. These algorithms should be similar and have 
different error rate. 

There is also interesting task of redundant information 
decrease. For this task it is important to find the average 
class size, guaranteeing the minimal error rate. The reason 
in such procedure conditioned also by the class size 
decrease for the objects, interfering the recognition on the 



training phase. 
The estimation of the training set reduction influence 

on the recognition results gives the possibility to define 
the data structure (the relationship between etalon objects 
and objects that are the spikes or non-informative ones). 
Also the less class size the less time needed for the 
decision making procedure. But the most importance of 
such approach consists in possibility to learn precisely 
and to understand much deeper the algorithms 
overtraining phenomenon. 

In this paper we are going to consider the metrical 
classifiers. Among all metrical classifiers the most applied 
and simple are the kNN classifiers. These classifiers have 
been used to build practical target recognition systems in 
different areas of human's activity and the results of such 
classification can be easily interpreted. 

3. PROBABILISTIC APPROACH TO 
PARAMETRICAL OPTIMIZATION OF THE KNN 
CLASSIFIERS 

The most advanced methods for algorithm 
composition optimization, informative training set 
selection and feature selection are bagging, boosting and 
random space method (RSM). These methods try to use 
the information, containing in the learning sample as 
possible as they can. Let us consider the metrical 
classifier optimization in feature space, using different 
metrics. The most general presentation of the measure 
between feature vectors x  and y  has been realized 
through Manhatten measure as the simple linear measure 
with weighted coefficients ia  [4]: 
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where ),( yxd is the arbitrary measure between vectors x  
and y . 

Minkovski measure as the generalized measure in 
pattern recognition theory can be presented in form of 
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where parametrical multiplier )( pC  have been presented 
in form of  
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One can make the following conclusions. An arbitrary 
measure is the filter in feature space. It determines the 
weights on features. The weight must be proportional to 
the increase of one of indexes, when feature has been 
added to the general feature set that has been used for the 
class discrimination procedure. Such indexes are: correct 
recognition probability, average class size, divergence 
between classes, Fisher discriminant etc. [5]. One can use 
another indexes, but the way of their usage has to be 
similar. If one of the features does not provide the index 

increase (or worsen it) the value of such feature weight 
should be taken as zero. So by force of supplementary 
decrease of feature number one can accelerate the 
recognition process, retaining the qualitative 
characteristics. The feature optimization problem and the 
measure selection have been solved uniquely. This 
procedure has been realized, using weighted features and 
linear measure with weighted coefficients. Feature 
selection task at the same time has been solved partially. 
First the feature subset from general set is determined. 
Such set has been determined by some algorithm (for 
example by the number of orthogonal transforms). The 
algorithm should satisfy the following conditions: class 
entropy minimization or divergence maximization 
between different classes. These conditions have been 
provided by the Principle Component Analysis [4]. The 
last parameter, using in the model is the decision function 
or decision rule. Number of decision functions can be 
divided onto functions, working in feature space and the 
functions, based on distance functions. For example the 
Bayes classifier, linear Fisher discriminant, support vector 
machine etc. work in feature space. The decision making 
procedure is rather complex in multidimensional feature 
space, when one uses such decision rules. Such 
circumstance is especially harmful for continuous 
recognition process with pattern series that have been 
recognized. Thus, realizing the recognition system with 
large databases in practice, one uses classifiers, based on 
the distance function. The simplest classifier is 1NN. But 
this classifier has been characterized by the smallest 
probability indexes. Therefore one should use kNN one. 
So the task consists in selection of k value that is optimal 
for decision making procedure in fiducial interval bound. 
This interval corresponds to the list of possible 
candidates. In such case k value has upper bound by the 
class size. In classical approach the nearest neighbor 
value should be taken rather large, approximating Bayes 
classifier. 

4. PROBABILISTIC APPROACH TO NON-
PARAMETRICAL OPTIMIZATION OF THE KNN 
CLASSIFIERS 

Let us consider RS with training and self-training. The 
calculation and analysis of the parameters of such systems 
is carried out on the basis of learning set. Let there exists 
the feature distribution in linear multidimensional space 
or unidimensional distribution of distances. We are going 
to analyze the type of such distribution. The recognition 
error probability for the mean 0=µ  could be presented 

as ∫
≥θ||
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Chebyshev inequality [6] we obtain 2
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Let consider the case of mean and variance equality of 
)(xp  distribution. The upper bound for single mode 

distributions with 0=µ  mode with help of Gauss 
inequality [7] is equal: 
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Let 00 == µµ  and στ ≡ . Then the threshold θ  is 

λσλτθ ==  and 
σ
θλ = . Thus the Gauss inequality for 

the threshold θ  could be presented in form of: 
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As seen from (5), the Gauss upper bound estimate for 
the single-mode distribution is better in 2.25 times then 
for the arbitrary distribution. So the influence of the 
distribution type on the error probability is significant. 
The normal distribution has equal values of mode, mean 
and median. Also this distribution is the most popular in 
practice. From the other hand the normal distribution has 
been characterized by the maximum entropy value for the 
equal values of variance. This means that we obtain the 
minimal value of classification error probability for the 
normally distributed classes. For the algorithm 
optimization one should realize the following steps: 
• to calculate the distance vector between objects for the 

given metric; 
• to carry out the non-parametrical estimation of the 

distance distribution in this vector by the Parzen 
window method or by the support vector machines; 

• to estimate the mean and variance of the distribution; 
• on the basis of the estimated values to carry out the 

standardization of the distribution ( 0=µ , 1=σ ); 
• to build the distributions both for the theoretical case 

and estimated one by the non-parametrical methods; 
• to calculate the mean square deviation between the 

distributions; 
• to find out the parameter space, when deviation 

between the distributions less then given δ  level. 

5. COMBINATORIAL APPROACH 
Let present the recognition results for kNN classifier 

in form of binary sequence: 
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Fig.1. The recognition results in form of binary sequence for 
kNN classifier 

Using kNN classifier, it is important that among k 
nearest neighbours we have the related true objects 
majority or the absolute one. Let consider more simple 
case, meaning the related majority. The kNN classifier 
correct work consists in fact that for k nearest neighbours 
it has to be executed the condition 
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 are the groups that appear after class size 
decrease. Under the group one understands the 
homogeneous sequence of elements. In such sequence 
(see Fig.1) there exist patterns of all classes. In general 
case there is no the direct conformity between the group 
number and the class number although. 

Let consider the case of non-pair k value in kNN 

classifier only. This means that we have the case of 
synonymous classification. Such univocacy could 
disappear in case of pair k value and votes equality for 
different classes. 

Let estimate the effect of class size reduction in case 
of kNN classifier. Note that reduced class sizes are equal 
to each other and equal ∗s . It is considered the kNN 

classifier correct work condition: ∗≤+
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contradistinction to 1NN classifier there is no such an 
importance of the first nearest patterns of the true class. 
Thus all such sequences one could denote as il . Let 

determine the probabilities that it will be selected *s  
patterns from the true class by the combinatorial 
approach. These probabilities have fiducial sense. This 
means that for the given part of true objects there will be 
no selections among the patterns of the false classes by 
the correspondent combinatorial way. The multiplication 
of pointed two probabilities determines the probability of 
kNN classifier correct work. Let assign jq  as the 

recognition error probability for the corresponding im  
groups: 
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The combinatorial expression for jq  probability could 
be written in form of: 
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The fiducial probability for arbitrary true pattern 
sequence is equal: 
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Thus the correct recognition probability for kNN 
classifier has been determined by probability (9) and 
addition to probability (8): 
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(10) 

It is modeled the recognition process with different 
sequences of patterns of true and false classes for the 1NN 
and kNN classifiers in case of related majority. For the 
modeling the face recognition system has been taken. The 
class size (training set) has been taken as 18 according to 
the database we made. On the Fig.1 the results of 
modeling of the training set decrease influence on the 
recognition results for the 1NN classifier have been 
presented. On the Fig.2 the similar results for the kNN 

classifier under condition ∗=+
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presented.  

 

 

 

 

Fig.2. The probability of correct recognition as 
function of training set ( x  axis) and number of 

true/false objects in the target sequence ( y  axis) for 
the 1NN classifier 

  

Fig.3. The probability of correct recognition as 
function of training set ( x  axis) and number of 

true/false objects in the target sequence( y  axis) for 
the kNN classifier 

On the Fig.1,2 x  axis means the size of the training 
set and the y  axis means the size of the true pattern 
sequence (left picture) and sequence of both true and false 
patterns (right picture). The y  axis has been formed by 
the following way. We organized 2 cycles where we 
changed the number of true and false patterns. For every 
combination of these patterns and different class size we 

calculate the probability of correct recognition. 

 
Fig.4. The probability of correct recognition as function of 

training set ( x  axis) and 1
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Fig.5. The probability of correct recognition as 

function of 1
2

+





 kENT  ( x  axis) and number of 

true/false objects in the target sequence ( y  axis) 

On the Fig.4,5 the results of kNN classifier modeling 
have been presented. Here it has been satisfied the 

following condition: ∗≤+





 skENT 1

2
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fiducial probability as function of training set size ( x  

axis) and 1
2

+





 kENT  value ( y  axis) has been 

presented. 

6. SOME MOMENTS OF PROBABILISTICALLY 
COMBINATORIAL APPROACH APPLICATION 

The probability part of proposed approach consists in 
following idea. Despite of combinatorial approach, where 
the recognition results were determined precisely, we 
define only the probability of the initial sequence 
existing. Due to low probability of arbitrary sequence 
existing (especially for the large sequences) it has been 
determined the probability of homogeneous sequences 
existing of the type }0{  or }1{ . This probability has been 
determined on the basis of the last object in given 
sequence as probability of replacing this object (the 
object from the true class }1{  by the others objects of the 



false classes from the database. This means that the size 
of homogeneous sequence has been determined by the 
most "week" object in the homogeneous pattern 
sequence. The probability of existing of the non-
homogeneous sequences is inversely proportional to the 

||2 ml+  value, where || ml +  is the sequence size. This 
procedure could be realized, using distribution function 
(fatigue function) of the distances between objects. This 
approach has been developed for metrical classifiers and 
classifiers on the basis of distance function in [3,8,9,10]. 
Thus we need to calculate the probability of sequence 
with true patterns that has definite size or for the given 
probability rate we need to calculate the maximal size of 
the sequence that satisfies this probability. For the binary 
sequence the sum of the weights of the lower order bits is 
always less than the next more significant bit. The 
difference is equal to 1. This means that arbitrary pattern 
replacement of the true class in the fiducial interval is 
equivalent to the alternate replacement of the previous 
ones. The minimal whole order of the scale of notation 
that has such peculiarity is equal to 2. Thus we need to 
calculate the weights of the true patterns position and 
compare them with binary digit. Such representation of 
the model allows us to simplify the probability 
calculation of the patterns replacement from the true 
sequences by the patterns of false classes. From the other 
side the arbitrary weights can be expressed through the 
exponent of number 2 that also simplifies the 
presentation and calculation of these probabilities. So the 
probability of the homogeneous sequence of the true 
patterns existence has been calculated on the basis of 
distance distribution function and is the function of the 
algorithm parameters. We should select the sequence of 
the size that has been provided by the corresponding 
probability. We after apply the combinatorial approach 
that allows us to calculate the influence effect of the class 
size decrease on the recognition probability rate. Since 
the probabilistic part of the given approach has been 
determined by the recognition algorithm parameters, the 
integration of both probabilistic and combinatorial parts 
allows us to define more precisely the influence of the 
effect of the training set reduction. 

Let consider step by step the example of fast 
computing of the probability of replacement of true 
pattern from the sequence by the false one, where 
relation between weights of the objects is whole 
exponent of number 2. Thus for example the weights can 
be presented by the following way: 

}2 ,2 ,2 ,2 ,2 ,2 ,2{ 0123469=w . As known the probability 
of replacement of true object from the sequence by the 
false one, when it is known that replacement is true event 
is inversely proportional to the weights of these objects. 
Let define the probability of replacement of the object, 
having the 92  weight comparatively to the object with 

62  weight. As far as we do not know what object has 
been replaced the total weight of the fact that there will 
not be replaced the objects with 62  weight and lower is 
equal: 012346 22 2 222 +++++=w . This weight can be 
expressed trough 62  weight accurate within 1 by 
following way: 66 2*5.1)5.01(2 =+ . In case of large 

sequences this one has week influence on the accuracy. 
The relation between 92  and 62  is equal to 8. In case of 
divisible group of events we obtain that 15.18 =+ λλ , 
where the proportional coefficient λ  approximately 
equal to 0.11. So the probability of non-replacement of 
the object with 92  weight is equal to 88.011.0*8 = . The 
object with 62  weight has the corresponding probability 
equal to 12.088.01 =− . Since we know exactly that 
replacement is the true event and the last object has 
weight equal to 1 the accuracy correction that is equal to 
1 makes the appropriate correction of probability 
calculation. 

7. CONCLUSION 
In this paper the results of both combinatorial and 
probabilistic approach have been presented. As seen from 
the figures there was realized the advanced analysis and 
estimation of the recognition results, when the training 
set is decreased. So we can make the prognosis of the 
recognition probability for reduced training sets, using 
combinatorial approach. The reliability of such method 
can be provided on the basis of probabilistic approach. 
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