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Abstract.  Multiphase queueing systems (tandem queues, queues in series) are of special interest 
both in theory and in practical applications (packet switch structures, cellular mobile networks, 
message switching systems, retransmission of video images, assembly lines, processes of conveyor 
production, etc. ). In this paper, we deal with approximations of multiphase queueing systems. We 
investigated departure flows of the served customers under heavy traffic in multiphase queueing 
systems. The theorem on the law of the iterated logarithm for departure flows of the customers  
served under  heavy traffic conditions in multiphase queueing systems has been proved. 

1. Introduction 
The paper is designated to the analysis of queueing systems, arising in the network theory and communi-

cations theory (called multiphase queueing systems, tandem queues or series of queueing systems). Thus, in this 
paper, we investigated departure flows of the served customers under heavy traffic in multiphase queueing sys-
tems. The theorem on the law of the iterated logarithm for departure flows of the customers  served under  heavy 
traffic conditions in multiphase queueing systems has been proved. 

The works on departure time or number of departures for the queues in  heavy traffic are  sparse. One of 
the first papers of this kind [9], functional limit theorems for the number of departures and the departure time of 
the customer in single-server queues are proved. In [15] and [5], it is investigated  departures in multiclass and 
multiserver queues. In [6], it is presented studies of simulations for a departure process in multiphase queueing 
systems. In [14], [1] and [5], it is investigated the limiting behaviour of the departure time of the customer in 
multiphase queueing systems. In [13], it is presented the convergence of departures on tandem queues. In [12], 
functional limit theorems for the number of departures in multiphase queueing systems for various conditions of 
heavy traffic are proved. 

We are investigating here the k-phase queueing systems (see, for example, [10]). A queueing system 
consisting of k consecutive service units is said to be a k-phase queueing system. The service process at the ith 
service unit is called the ith phase of service. Upon completing its service at the ith service unit (i=1, … , k-1), a 
customer enters immediately the (i+1)st phase. Upon completing its service at the kth service unit, a customer 
leaves a system. Queues of unbounded length are allowed at any service unit: FCFS service discipline is assu-
med. Let us denote t n  as the time of arrival of the n-th customer; )( j

nS as the service time of the multiphase 
queueing systems; .1 nnn ttz −= +  Let us introduce mutually independent renewal processes 
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of customers which arrive at  multiphase queueing systems until time t). Next, denote by )(tjτ  the total number 

of customers after service departure from the jth phase of multiphase queueing systems until time t; )(tQ j  as 
the queue length of customers in the j-th phase of multiphase queueing systems at a time moment t; 
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)()(  stands for the summary queue length of customers in the jth phase of multiphase queueing sys-

tems at the time moment t,   j=1,2,… ,k  and  t>0. Suppose that the  random variables are defined on one common 
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probability space ( PF ,,Ω ). Let interarrival times )( nz  to the multiphase queueing system and service times 

)( )( j
nS  in every phase of the multiphase queueing system for (j=1, 2,… ,k) be mutually independent identically 
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In [11], the relations 
)()()( 1 tttQ jjj ττ −= − ,                                                                (1) 
))()(()( 1 ⋅−⋅= − jjtj xftQ τ ,                                                               (2) 
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Next, using (1) - (2), we achieve that 
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− τττ , for j=1, 2,…,k and ).()(0 tet =τ           (3) 

Also, we note that 
),()()( ttetv jj τ−=   j=1,2,…,k.                                                   (4) 

At first assume the following condition to be fulfilled .0...10 >>>> kµµµ  
Then 

.0... 11 >>>> − ααα kk                                                                    (5) 

2. Main results 
One of the main results of the paper is a theorem on the law of the iterated logarithm for the departure 

flows of served customers in multiphase queueing systems. 
Theorem. If conditions (5) are fulfilled, then 











−=

⋅

⋅⋅−

∞→
1

)(
)(

lim
na

tnnt
P

j

jj

n σ

µτ
= 11

)(
)(

lim =









=

⋅

⋅⋅−

∞→ na
tnnt

P
j

jj

n σ

µτ
, 

j=1,2,…,k, 10 ≤≤ t  and .lnln2)( nnna =  
Proof. First, denote  

.10,,...,2,1,
)(

)(
)(,

)(
)(

)( ≤≤=
⋅

⋅⋅−
=

⋅

⋅⋅−
= tkj

na
tnnt

t
na

tnntx
tx

j

jjn
j

j

jjn
j σ

µτ
τ

σ

µ
 

We note that (see (3)) 
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From this we get for arbitrary ε >0 that 
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We achieve that, if conditions (5) are fulfilled, then (see, for example, [8] ) 
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But, applying the law of the iterated logarithm to the renewal process (see [7]), we obtain 
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From this, (6) and (7) we get that 

11)(lim1)(lim =




 ==








−=

∞→∞→
tPtP n

jn
n
j

n
ττ , kj ,...,2,1=  and .10 ≤≤ t  

The proof of the theorem is complete. 
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