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Abstract. For an axially symmetric two-dimensional non-stationary heat transfer problem with 
the mixed boundary conditions the new method for research of coming quasi-stationary phases 
is offered. By obviously way the results of such research may be put in a basis of development 
of identification methods of heat characteristics and tools of non-destroying monitoring of heat 
transfer process. The analytical solution for research of a quasi-stationary heat transfer phase 
on model of the isotropic half-space which are heated up through circular area on its surface is 
obtained.  Heating is carried out as follows: inside a circle on a surface of a half-space arbitrary 
function of exterior temperature is given, and outside of this circle the ideal heat isolation of a 
surface is exists.  

In a cylindrical coordinates ( )τ,, zr  mathematical form of corresponding axis-symmetrical problem 
with a temperature function ( )τ,, zrT  can be noted as follows: 
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with the mixed boundary conditions 
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By the using of a integral Laplace transform and by the introduction of a surplus temperature 

( ) ( ) 0,,,, TzrTzr −= ττθ  equations (1), (5) and (6) take a forms 
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The general solution of this problem has a form [1] 
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where ( )pr0J  is a Bessel function first kind and zero order, ( )spC ,  is unknown analytical image-function. 

According to mixed boundary conditions (8) and (9) to find ( )spC ,  we should solve the following 
dual integral equations with L -parameter ( 0Re >s ): 
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By the using of substitution [2] 
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the second dual integral equation (14) is fulfilled (with account of corresponding non-continuous  integral on 
∞<< rR ) and from (13) it is need to solve the following integral equation on Rr <<0 : 

( ) ( ) ( ) .0,
22

sin
22

,22
exp

0 22
,

s

T
srfdt

R

r
s

a

rt

rt

st
dts

a

trr

tr

st
−=∫

−

−
−

−
−∫

−


























 ϕϕ
 (16) 

Let's present function ( )st,ϕ  as a series [3] 
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Substitution ( )st,ϕ  from (17) into (16) reduces in the equation: 
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It is possible to find new formulas of inverse integral Laplace transforms:  
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where ( )xnH  are orthogonal Hermit polynomials. 

By the using of inverse integral Laplace transforms (19), (20), (21), ( ) ( ) 0,0,1 Trf
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The equation (18) reduces in the form 
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where ( ) ( ) ( )xxxn nH2exp −=Ω , Rr <<0 , 0>τ . 
It is known, that a quasi-stationary phase of heat transfer process of the semi-bounded isotropic solid 

with mixed boundary conditions (8) and (9) will occur at the certain moment 0>τ  (or, more exactly, when a 

value of the Fourier criterion 2RaFo τ=  will be more than 1). 
At 1<Fo  a process of heating of a considering solid is very complicated and the great many of 

terms of a series (17) also is necessary to calculate with a sufficient accuracy. And, factors ( )rnϕ  should be 
determinate at identical complex values of L -parameter in the left and right parts of an integral equation 
(16). In a quasi-stationary heating phase the given development of temperature fields on a surface of a half-
space may be investigated with the certain accuracy already at the account only the first terms of the appro-
priate infinite series. 

Thus, in case of a quasi-stationary phase a value of factor ( )r0ϕ  can be possible to determine from 
the appropriate integral equation obtained from (22) by the 0=n , by the replacement of a variable 

( )ξaRx 2= , by the using of known formula [4, p.344] 
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and by the calculation of corresponding integrals we come to the following integral equation: 
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where  at small values of argument x  the approximate equality ( ) πxx 21erfc −≅  is valid. 
Hence, in a quasi-stationary phase with the using of the notation ( ) ( ) 0,, TrfrF −= ττ  it is possible to 

write a solution of the equation (23) as 
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Note here, that in stationary phase ( ∞=τ ) from formula (24) we can be obtain known formula 
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where ( ) ( )τ,
τ
lim* rfrf
∞→

=  is the given distribution of absolute stationary temperature in circular area 

Rr <<0  on a surface of a half-space. 
In conclusion let’s mark the possibility of research of a quasi-stationary heat transfer phase on mod-

el of the isotropic half-space with mixed boundary conditions on its surface. For this purpose we can write 
the analytical solution of mathematical problem (1) – (6) by using formulas (12), (15), (17) at 0=n  and (24). 
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