Initial Guesses Generation for Fluorescence Intensity Distribution Analysis

Victor V. Skakun¹,3, Eugene G. Novikov²,. Vladimir V. Apanasovich³, Hans Tanke ${ }^{4}$, Andre Deelder ${ }^{1}$, Oleg A. Mayboroda ${ }^{1}$

${ }^{1}$ Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
${ }^{2}$ Service Bioinformatique, Institut CURIE, Paris, France
${ }^{3}$ Department of Systems Analysis, Belarusian State University, Minsk, Belarus
${ }^{4}$ Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands

Method of moments

$$
M_{k}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{m}\right)=\tilde{M}_{k}, \quad k=1,2, \ldots, m, \quad \text { (1) }
$$

where $\eta_{1}, \eta_{2}, \ldots, \eta_{m}$ is a set of unknown parameters
$\tilde{M}_{k}=\left\langle n^{k}\right\rangle=\sum_{n=1}^{N-1} n^{k} P^{*}(n)$
$P^{*}(\mathrm{n})$ is a probability to get n photons within a counting time interval T
in application to factorial cumulants

$$
\begin{align*}
& K_{k}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{m}\right)=\tilde{K}_{k} \tag{3}\\
& K_{k}=\left.\frac{d^{k} \ln G(\xi)}{d \xi^{k}}\right|_{\xi=1} \\
& \tilde{F}_{k}=<n(n-1) \ldots(n-k+1)>=\sum_{n=k}^{N-1} n(n-1) \ldots(n-k+1) P^{*}(n) \tag{6}\\
& \tilde{K}_{k}=\tilde{F}_{k}-\sum_{i=1}^{k-1}\left(\frac{k-1}{i}\right) \tilde{K}_{k-i} \tilde{F}_{i}, \quad \text { where }\left(\frac{k-1}{i}\right)=\frac{(k-1)!}{i!(k-i-1)!} \tag{7}
\end{align*}
$$

Historical background

Moment analysis of fluorescence fluctuations

$$
\left\{\begin{array}{l}
<\Phi>=\chi_{1} \sum_{i} q_{i} c_{i} \\
<\Delta \Phi^{2}>=\chi_{2} \sum_{i} q_{i}^{2} c_{i} \tag{8}\\
<\Delta \Phi^{3}>=\chi_{3} \sum_{i} q_{i}^{3} c_{i} \\
<\Delta \Phi^{4}>-3<\Delta \Phi^{2}>^{2}=\chi_{4} \sum_{i} q_{i}^{4} c_{i} \\
\chi_{k}=\int B^{k}(r) d r
\end{array}\right.
$$

here Φ is the fluorescence intensity, c_{i} is the number of molecules per observation volume, q_{i} is the specific brightness expressed in cpm, $B(r)$ is a spatial brightness function, i is the number of molecular species

Fluorescence Cumulant Analysis

$$
\begin{equation*}
K_{k}=\chi_{k} \sum_{i} c_{i} q_{i}^{k} \tag{10}
\end{equation*}
$$

Muller J.D. Biophis. J. 86, 2004

FIDA

$G(\xi)=\sum_{n=0}^{\infty} \xi^{n} P(n) \quad$ (11) $\quad P(n)$ is photon counting distribution (PCD)
$G(\xi)=\exp \left((\xi-1) \lambda T+\sum_{j} c_{j} \int_{V}\left\{\exp \left[(\xi-1) q_{j} T B(r)\right]-1\right\} d V\right)$
here c_{j} is the mean number of molecules per observation volume, q_{j} is the specific brightness expressed in cpmt, V is the observation volume, T is the counting time interval, $B(r)$ is brightness profile function which is the product excitation intensity and detection efficiency, j is the number of molecular species and λ is the mean background count rate of detector.

Evotec Biosystems AG. 1998. Int. Patent WO 98/16814.
Kask at al. PNAS 96, 1999.
$\frac{d V}{d x}=A_{0}\left(x+a x^{2}+b x^{3}\right), \quad x=\ln \left[B_{0} / B(r)\right], \quad B(r)=B_{0} e^{-x}$
where a, b are instrumental parameters and A_{0}, B_{0} can be calculated from system of normalization equations:
$\chi_{1}=\int_{V} B(r) d V=1$,
(14) Finally $\quad P(n)=F F T^{-1}\left(G\left(e^{i \varphi}\right)\right)$
$\chi_{2}=\int_{V} B^{2}(r) d V=1$.
Evotec Biosystems AG. 1998. Int. Patent WO 98/16814.

General system of equations for IG generation

$$
\begin{align*}
& K_{k}=\left.\frac{d^{k} \ln G(\xi)}{d \xi^{k}}\right|_{\xi=1} \\
& K_{1}=\left(\lambda+\sum_{j} c_{j} q_{j}\right) T \\
& K_{2}=\sum_{j} c_{j} q_{j}^{2} T^{2} \\
& K_{k}=\chi_{k} \sum_{j} c_{j} q_{j}^{k} T^{k}, \quad k=3,4, \ldots, \\
& \chi_{k}=\int_{0}^{\infty}\left(B_{0} e^{-x}\right)^{k} A_{0}\left(x+a x^{2}+b x^{3}\right) d x \tag{16}\\
& B_{0}=\frac{8(2 a+6 b+1)}{2 a+3 b+2}, \quad A_{0}=\frac{2 a+3 b+2}{8(2 a+6 b+1)^{2}} \tag{17}
\end{align*}
$$

IG for one component model

Basic system of equations:

estimated parameters are c, q, λ, a, b

$$
\left\{\begin{array}{l}
K_{1}=(\lambda+c q) T \\
K_{2}=c q^{2} T^{2} \\
K_{3}=c q^{3} T^{3} \frac{64(2 a+6 b+1)(2 a+2 b+3)}{27(2 a+3 b+2)^{2}} \tag{18}\\
K_{4}=c q^{4} T^{4} \frac{4(2 a+6 b+1)^{2}(4 a+3 b+8)}{(2 a+3 b+2)^{3}} \\
K_{5}=c q^{5} T^{5} \frac{4096(2 a+6 b+1)^{3}(10 a+6 b+25)}{625(2 a+3 b+2)^{4}}
\end{array}\right.
$$

Simplifications: background (λ) is known
estimated parameters are c, q, a, b

$$
\left\{\begin{array}{l}
\chi_{3}=\frac{\left(K_{1}-\lambda T\right) K_{3}}{K_{2}^{2}}=\frac{64(2 a+6 b+1)(2 a+2 b+3)}{27(2 a+3 b+2)^{2}} \\
\chi_{4}=\frac{\left(K_{1}-\lambda T\right)^{2} K_{4}}{K_{2}^{3}}=\frac{4(2 a+6 b+1)^{2}(4 a+3 b+8)}{(2 a+3 b+2)^{3}} \tag{23}
\end{array}\right.
$$

$$
\begin{align*}
& \qquad q=\frac{K_{2}}{\left(K_{1}-\lambda T\right) T}, \quad c=\frac{\left(K_{1}-\lambda T\right)^{2}}{K_{2}} \tag{21}\\
& \text { In general } \quad \chi_{k}=\frac{\left(K_{1}-\lambda T\right)^{k-2} K_{k}}{K_{2}^{k-1}}
\end{align*}
$$

Solution of system 19

Shape of the fourth order polynomial with respect to parameter a

$$
H_{1} a^{4}+H_{2} a^{3}+H_{3} a^{2}+H_{4} a+H_{5}=0
$$

$$
\alpha^{2} \beta^{2}-18 \alpha \beta+27 \alpha+16 \beta-27>0-\text { red line }
$$

$$
\alpha^{2} \beta^{2}-18 \alpha \beta+27 \alpha+16 \beta-27 \leq 0-\text { blue line }
$$

$$
\alpha=\frac{16875 K_{5} K_{3}}{16384 K_{4}^{2}} \quad \beta=\frac{1024 K_{4} K_{2}}{729 K_{3}^{2}}
$$

Root selection:
$>$ setting admissible ranges
$>$ minimization of χ^{2} criterion

Fig. 1. Roots of polynomial

IG for two component model

Initial system of equations

estimated parameters are $c_{1}, c_{2}, q_{1}, q_{2}, \lambda, a, b$
$K_{1}=\left(\lambda+c_{1} q_{1}+c_{2} q_{2}\right) T$
$K_{2}=\left(c_{1} q_{1}^{2}+c_{2} q_{2}^{2}\right) T^{2}$
$K_{3}=\left(c_{1} q_{1}^{3}+c_{2} q_{2}^{3}\right) T^{3} \frac{64(2 a+2 b+3)(2 a+6 b+1)}{27(2 a+3 b+2)^{2}}$
$K_{4}=\left(c_{1} q_{1}^{4}+c_{2} q_{2}^{4}\right) T^{4} \frac{4(4 a+3 b+8)(2 a+6 b+1)^{2}}{(2 a+3 b+2)^{3}}$
$K_{5}=\left(c_{1} q_{1}^{5}+c_{2} q_{2}^{5}\right) T^{5} \frac{4096(10 a+6 b+25)(2 a+6 b+1)^{3}}{625(2 a+3 b+2)^{4}}$
$K_{6}=\left(c_{1} q_{1}^{6}+c_{2} q_{2}^{6}\right) T^{6} \frac{4096(2 a+b+6)(2 a+6 b+1)^{4}}{27(2 a+3 b+2)^{5}}$
$K_{7}=\left(c_{1} q_{1}^{7}+c_{2} q_{2}^{7}\right) T^{7} \frac{8^{6}(14 a+6 b+49)(2 a+6 b+1)^{5}}{2401(2 a+3 b+2)^{6}}$

Simplifications:

1. background (λ) and instrumental parameters a and b are known

$$
\begin{align*}
& K_{1}-\lambda T=\left(c_{1} q_{1}+c_{2} q_{2}\right) T \\
& K_{2}=\left(c_{1} q_{1}^{2}+c_{2} q_{2}^{2}\right) T^{2} \\
& K_{3} / \chi_{3}=\left(c_{1} q_{1}^{3}+c_{2} q_{2}^{3}\right) T^{3} \\
& K_{4} / \chi_{4}=\left(c_{1} q_{1}^{4}+c_{2} q_{2}^{4}\right) T^{4}, \\
& \chi_{3}=\frac{64(2 a+6 b+1)(2 a+2 b+3)}{27(2 a+3 b+2)^{2}} \tag{24}\\
& \chi_{4}=\frac{4(2 a+6 b+1)^{2}(4 a+3 b+8)}{(2 a+3 b+2)^{3}} \tag{26}
\end{align*}
$$

2. background (λ) is known

A number of predefined parameters a and b used for solution of the sysmem 25. As result a number of sets of parameters is generated and the set resulting in lowest χ^{2} criterion is accepted.

Testing of IG for one component model on simulated data

1. IG for all parameters c, q, λ, a, b

Table 1. IG for one component model on noisy PCD at different S/N. IG were rejected when either λ was negative or a and b exceed bounds ($-2,0$); $(0,2)$ respectively. $T=5 \times 10^{-5} .50$ simulations in each series.

Parameter	Used for simulation	Recovered			$S / N=\sqrt{m p_{\text {max }} /\left(1-p_{\text {max }}\right)}$
		$S / N_{i}=7000$	$S / N_{i}=3000$	$S / N_{i}=1000$	
c	5	4.994 ± 0.126	4.882 ± 0.205	4.327 ± 0.542	$S / N_{\text {initial }}=\sqrt{m p_{\max }}=$
q	20000	20016 ± 252	20253 ± 436	21633 ± 1462	$=\sqrt{\text { Value at Maximum }}$
λ	2000	2064 ± 1260	3208 ± 2086	9170 5948	
a	-1	-0.999 ± 0.019	-0.980 ± 0.034	-0.853 ± 0.152	$p_{\max }=\max _{n}(P(n))$,
b	0.5	0.500 ± 0.002	0.499 ± 0.003	0.495 ± 0.009	m is total number of photons

2. IG for parameters c, q, a, b (λ is known)

Table 2. IG calculated for one component model on noisy PCD at different $\mathrm{S} / \mathrm{N} . \lambda$ fixed to $2000 . T=5 \times 10^{-5}$.

Parameter	Used for simulation		Recovered		
		$S / N_{i}=1000$			
c	5	5.000 ± 0.006	4.999 ± 0.025	4.999 ± 0.107	
q	20000	20002 ± 24	20003 ± 107	20029 ± 455	
a	-1	-1.000 ± 0.004	-1.006 ± 0.015	-1.048 ± 0.106	
b	0.5	0.500 ± 0.008	0.514 ± 0.033	0.522 ± 0.183	

IG for parameters $c_{1}, c_{2}, q_{1}, q_{2}(\lambda, a, b$ are known $)$
Table 3. IG calculated for two component model on noisy PCD at different $\mathrm{S} / \mathrm{N} . \lambda=1000 . a=-1 ; b=0.5$; $T=2 \times 10^{-5} .50$ simulations in each series.

Parameter	Used for simulation	Recovered	
		$S / N_{i}=1000$	$S / N_{i}=100$
c_{1}	10	9.99 ± 0.13	10.11 ± 1.70
q_{2}	20000	19883 ± 635	18282 ± 5013
c_{1}	2	2.04 ± 0.23	2.59 ± 1.64
q_{2}	50000	49847 ± 1404	50931 ± 11676

Testing of IG for one component model on measured data

1. IG for all parameters c, q, λ, a, b

Table 4. IG calculated for one component model on measured data (Alexa 488). $T=8 \times 10^{-6}$.

Parameters	IG	Fit starting from IG
χ^{2}	0.781	0.760
c	23.12	25.08 ± 4.07
q	19192	18426 ± 1495
λ	18424	27 ± 37465
a	-4.41	-4.58 ± 0.47
b	3.22	3.47 ± 0.63

Confidential intervals are calculated as Asymptotic Standard Errors.
2. IG for parameters c, q, a, b (λ is estimated from additional measurement)

Table 5. IG calculated for one component model on measured data (Alexa 488). λ fixed to $1500 . T=8 \times 10^{-6}$

Parameters	IG	Best fit $=$ fit starting from IG
χ^{2}	0.668	0.666
c	24.916	24.923 ± 0.189
q	18500	18500 ± 140.5
a	-1.463	-1.472 ± 0.0014
b	0.321	0.324 ± 0.0004

Confidential intervals are calculated as Asymptotic Standard Errors.

Testing of IG for two component model on measured data

Table 8. IG calculated for two component model on measured data (mixture of IgG labeled with Alexa 488 and pure dye). λ fixed to $1000 . T=2 \times 10^{-5}$

Parameters	IG	Best fit
χ^{2}	1.26	0.78
c_{1}	5.477	5.166 ± 0.089
q_{1}	32099	32768 ± 872
c_{2}	0.387	0.528 ± 0.052
q_{2}	90770	78824 ± 2511
λ	1000 (fixed)	1000 (fixed)
a	-0.85	-0.769 ± 0.014
b	0.25	0.296 ± 0.018

Confidential intervals are calculated as Asymptotic Standard Errors.

minima in χ^{2} space

Table 6. Parameters used for calculation (obtained from best fit of Alexa 488). $T=8 \times 10^{-6}$.

Parameter	Value
c	24.923
q	18500
λ	1500
a	varied
b	varied

Fig. 2. χ^{2} surface plotted versus a and b.

Table 7. Calculation of χ^{2} for all three roots of the system 22.

Parameter	set 1	set 2	set 3
a	-1.393	-1.463	-4.643
b	-0.861	0.321	3.539
χ^{2}	0.732	0.668	0.711

$$
\left\{\begin{array}{l}
\frac{64(2 a+6 b+1)(2 a+2 b+3)}{27(2 a+3 b+2)^{2}}=\frac{\left(K_{1}-\lambda T\right) K_{3}}{K_{2}^{2}}=\chi_{3} \tag{22}\\
\frac{4(2 a+6 b+1)^{2}(4 a+3 b+8)}{(2 a+3 b+2)^{3}}=\frac{\left(K_{1}-\lambda T\right)^{2} K_{4}}{K_{2}^{3}}=\chi_{4}
\end{array}\right.
$$

Conclusions

1. In theory, if we have molecular system with n-components, IG can be obtained as solution of system of equations 15 .
2. A non iterative, straightforward method of IG calculation for one and two-component system is proposed.
3. Applicability of method was verified with testing on simulated and measured data.
4. A rule of selecting of IG from possible results is suggested.
5. Impact of possible discontinuity points in model domain and consequently in χ^{2} space is discussed
6. developed IG allows to increase the speed of analysis in most cases at least into 5 times.
