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INTRODUCTION

In the analysis of initial-boundary value problems for nonstationary equations of mathematical
physics, attention is paid mainly to the stability of the solution with respect to the initial data and
the right-hand side. It was proved that the stability of a two-level operator-difference scheme with
respect to the initial data is necessary and sufficient for its stability with respect to the right-hand
side [1, pp. 95–97].

However, when solving a differential problem, one can face a situation in which the coefficients
of the equation are known approximately rather than exactly. (For example, they are obtained with
the use of some numerical algorithm, as a result of physical measurements, etc.) It is therefore
important to analyze the stability of the solution of the differential problem under perturbations of
the initial conditions, the right-hand side, and the operator coefficients (strong stability). Similar
problems arise for finite-difference approximations to the differential problem.

The first results concerning the strong stability analysis of operator-difference schemes approx-
imating nonstationary problems of mathematical physics were given in [2, 3].

In 1999, Gulin conjectured that stability with respect to the initial data should imply not only
stability with respect to the right-hand side but also coefficient stability; this assumption was
proved in [4]. Later, Makarov put forward the conjecture that the three notions (stability with
respect to the initial data, stability with respect to the right-hand side, and coefficient stability)
are equivalent.

In Section 1 of the present paper, by analogy with [5], we give the definition of strong stability
of a two-level operator-difference scheme. In Section 2, we introduce the notions of stability of a
scheme with respect to the initial data, stability with respect to the right-hand side, and coefficient
stability. If only the initial data and the right-hand side are perturbed in the original scheme,
then stability with respect to the right-hand side and the initial data, together with the triangle
inequality, implies the stability of the difference scheme. However, if the operator coefficients are
also perturbed, then the perturbation problem becomes nonlinear and stability with respect to the
initial data and the right-hand side and coefficient stability do not imply the strong stability of
the difference scheme. In Section 3, we prove the above-mentioned Gulin–Makarov conjecture.

1. STRONG STABILITY OF TWO-LEVEL OPERATOR-DIFFERENCE SCHEMES

Let Hh be a real finite-dimensional space whose dimension depends on h and can tend to infinity
as |h| → 0. Here h is a vector parameter equipped with a norm |h| > 0.

Let ˆ̄ωτ = {tn = tn−1 + τn, n = 0, . . . , n0; t0 = 0, tn0 = T} = ω̂τ ∪ {T} be an arbitrary grid on
the interval 0 ≤ t ≤ T with increments τn = tn − tn−1.

Consider the Cauchy problem for the two-level operator-difference scheme

Byt + Ay = ϕ, t ∈ ω̂τ , y(0) = u0, (1.1)

where A = Ahτ (tn) and B = Bhτ (tn) : Hh → Hh are linear operators, in general, depending on τ
and tn, y = yn = y (tn) ∈ Hh is the unknown function, and ϕ = ϕn = ϕ (tn) and u0 ∈ Hh are
given. The operators Ahτ (tn) and Bhτ (tn) are bounded for any given h and τ but, in general, not
uniformly bounded with respect to h and τ .

0012-2661/04/4007-1043 c© 2004 MAIK “Nauka/Interperiodica”



1044 LEMESHEVSKII et al.

We use the index-free notation of the theory of difference schemes [1, 6]:

y = yn = y (tn) , ŷ = yn+1 = y (tn+1) , yt = yt,n = (yn+1 − yn)/τn+1.

Along with problem (1.1), we consider the perturbed problem

B̃ỹt + Ãỹ = ϕ̃, t ∈ ω̂τ , ỹ(0) = ũ0. (1.2)

Let us proceed to the study of the strong stability of difference schemes. A solution of the
difference Cauchy problem (1.1) is an abstract function yhτ (tn) depending on the discrete argu-
ment tn ∈ ω̂τ and ranging in Hh. The input data of the problem consists of the initial vector
y0 = y0,hτ ∈ Hh and the right-hand side ϕ = ϕhτ (tn), which is a given abstract function of the dis-
crete argument tn ∈ ω̂τ and ranges in Hh. Suppose that Hh is a normed space, or, more precisely,
is equipped with some norms ‖yn‖(1n) and ‖ϕn‖(2n) in which we estimate the perturbation of the
solution and the right-hand side of Eq. (1.1), respectively. These norms can depend on t = tn, h,
and {τk}.

We introduce the perturbation δ = ỹ − y of the solution of problem (1.1) with respect to the
solution of problem (1.2); it satisfies the problem

B̃δt + Ãδ = (ϕ̃ − ϕ) +
(
B − B̃

)
yt +

(
A − Ã

)
y, t ∈ ω̂τ , δ0 = ũ0 − u0. (1.3)

If the operators An and Ãn are treated as mappings An, Ãn : H
(1n)
h → H

(2n)
h and the operators

Bn and B̃n as mappings Bn, B̃n : H(3n)
h → H(4n)

h , where H(α)
h ⊂ Hh (α = 1n, 3n) and Hh ⊂ H(α)

h

(α = 2n, 4n), then it is natural to estimate the perturbations of the operator coefficients An and
Bn in the operator norms

∥∥∥An − Ãn

∥∥∥
(3n)

=
∥∥∥An − Ãn

∥∥∥
H

(1n)
h

→H
(2n)
h

= sup
‖un‖

H
(1n)
h

�=0

∥∥∥(
An − Ãn

)
un

∥∥∥
H

(2n)
h

‖un‖H
(1n)
h

,

∥∥∥Bn − B̃n

∥∥∥
(4n)

=
∥∥∥Bn − B̃n

∥∥∥
H

(3n)
h

→H
(4n)
h

= sup
‖un‖

H
(3n)
h

�=0

∥∥∥(
Bn − B̃n

)
un

∥∥∥
H

(4n)
h

‖ũn‖H
(3n)
h

.

Following [5], we introduce the notion of strong stability.

Definition 1.1. The operator-difference scheme (1.1) is said to be strongly stable if it is stable
under perturbations of the input data, viz., the initial conditions, the right-hand side, and the
operator coefficients. In other words, there exist positive constants Mk, k = 1, 2, 3, 4, such that
the a priori estimate

‖ỹn − yn‖(1n) ≤ M1 ‖ũ0 − u0‖(10)
+ M2

n−1∑
k=0

τk+1 ‖ϕ̃k − ϕk‖(2k)

+ M3

n−1∑
k=0

τk+1

∥∥∥Ak − Ãk

∥∥∥
(3k)

+ M4

n−1∑
k=0

τk+1

∥∥∥Bk − B̃k

∥∥∥
(4k)

(1.4)

is valid.

Here and throughout the following, we assume that 0 ≤ n ≤ n0 < ∞.
Example 1.1. The main problem in the derivation of estimates of the form (1.4) is to choose the

spaces in which the operators An, Ãn and Bn, B̃n act so as to ensure that the norms of perturbations
of the operator coefficients are bounded.
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By way of example, we consider the constant operator Ay = − (ayx̄)x, x ∈ ωh, y0 = yN = 0,
where ωh is the uniform grid with increment h = 1/N on [0, 1] and a �= a(t) ≥ δ > 0 and
y = y(t) are grid functions. Then Ãy = − (ãyx̄)x, x ∈ ωh, y0 = yN = 0, ã �= ã(t) ≥ δ > 0,
and

(
A − Ã

)
y = − ((a − ã) yx̄)x, x ∈ ωh, y0 = yN = 0. The space Hh is defined as the set of grid

functions yi = y (xi) defined on ωh and vanishing for i = 0, N . The inner product and the norm in
Hh are given by the formulas

(y, v) =
N−1∑
i=1

yivih, ‖y‖ =
√

(y, y).

As H
(1n)
h we take, say, the normed space HÃ∗Ã with the norm ‖Ãu‖, u ∈ Hh, and H

(2n)
h = Hh. If

|ã(x) − a(x)| ≤ α1 < +∞ and |ãx(x) − ax(x)| ≤ α2 < +∞, then∥∥∥(
A − Ã

)
u
∥∥∥

Hh

≤ α
∥∥∥Ãu

∥∥∥
Hh

= α‖u‖HÃ∗Ã
;

consequently, for the perturbation of the operator A, we have∥∥∥A − Ã
∥∥∥

HÃ∗Ã→Hh

≤ α < +∞.

2. STABILITY WITH RESPECT TO THE INPUT DATA

The notion of stability with respect to the initial data and the right-hand side, as well as the
notion of coefficient stability for a stationary problem, was introduced in [6] for the difference
scheme (1.1).

Here we introduce the corresponding notions for the case of a nonstationary problem and per-
turbations of operator coefficients.

Along with problem (1.2), we consider the problems

Bỹ
(1)
t + Aỹ(1) = ϕ, t ∈ ω̂τ , ỹ(1)(0) = ũ0, (1.2a)

Bỹ
(2)
t + Aỹ(2) = ϕ̃, t ∈ ω̂τ , ỹ(2)(0) = u0, (1.2b)

B̃ỹ
(3)
t + Ãỹ(3) = ϕ, t ∈ ω̂τ , ỹ(3)(0) = u0. (1.2c)

Definition 2.1. The operator-difference scheme (1.1) is said to be stable with respect to the
initial data if there exists a positive constant M1 such that∥∥ỹ(1)

n − yn

∥∥
(1n)

≤ M1 ‖ũ0 − u0‖(10)
. (2.1)

Definition 2.2. The operator-difference scheme (1.1) is said to be stable with respect to the
right-hand side if there exists a positive constant M2 such that

∥∥ỹ(2)
n − yn

∥∥
(1n)

≤ M2

n−1∑
k=1

τk+1 ‖ϕ̃k − ϕk‖(2k) . (2.2)

Definition 2.3. The operator-difference scheme (1.1) is stable with respect to the operator
coefficients if there exist positive constants M3 and M4 such that

∥∥ỹ(3)
n − yn

∥∥
(1n)

≤ M3

n−1∑
k=1

τk+1

∥∥∥Ãk − Ak

∥∥∥
(3k)

+ M4

n−1∑
k=1

τk+1

∥∥∥B̃k − Bk

∥∥∥
(4k)

. (2.3)

DIFFERENTIAL EQUATIONS Vol. 40 No. 7 2004



1046 LEMESHEVSKII et al.

Furthermore, we introduce the perturbations of the solution of problem (1.1) with respect to the
solutions of problems (1.2a)–(1.2c): δ(k) = ỹ(k) − y, k = 1, 2, 3. For δ(k) (k = 1, 2, 3), we obtain
the problems

Bδ
(1)
t + Aδ(1) = 0, t ∈ ω̂τ , δ

(1)
0 = ũ0 − u0, (2.4)

Bδ(2)
t + Aδ(2) = ϕ̃ − ϕ, t ∈ ω̂τ , δ(2)

0 = 0, (2.5)

Bδ
(3)
t + Aδ(3) =

(
B − B̃

)
ỹ

(3)
t +

(
A − Ã

)
ỹ(3), t ∈ ω̂τ , δ

(3)
0 = 0. (2.6)

Moreover, δ(3) is a solution of the problem

B̃δ
(3)
t + Ãδ(3) =

(
B − B̃

)
yt +

(
A − Ã

)
y, t ∈ ω̂τ , δ

(3)
0 = 0.

Note that since problem (1.3) is nonlinear in the case of perturbation of the operator coefficients,
and since δ �= δ(1) +δ(2) +δ(3), it follows that, unlike the case of perturbations of the initial data and
the right-hand side alone, it is impossible to use the triangle inequality to obtain a strong stability
estimate for δ from the estimates for δ(1), δ(2), and δ(3).

We assume that the Cauchy problem (1.1) is solvable, i.e., the inverse operator B−1
n exists. Since

the operator Bn = Bhτ (tn) is bounded for given h and τn, i.e.,

‖Bnun‖ ≤ m ‖un‖ (m > 0),

it follows that the operator B−1
n satisfies ‖B−1

n un‖ ≥ (1/m) ‖un‖ for given h and τn; consequently,
the expression ‖B−1

n un‖ is a norm. The scheme (1.1) can be represented in the form [1]

yn+1 = Sn+1yn + τn+1B
−1
n ϕn, n = 0, 1, . . . , y0 ∈ H, (2.7)

where the operator Sn+1 of transition from level n to level n+1 is equal to Sn+1 = E− τn+1B
−1
n An.

By successively using formula (2.7), we obtain

yn = Tn,0y0 +
n−1∑
k=0

τk+1Tn,k+1B
−1
k ϕk. (2.8)

Furthermore,

yn = Tn,kyk +
n−1∑
j=k

τj+1Tn,j+1B
−1
j ϕj

for each k ≤ n − 1. Here Tn,k is the operator of transition from level k to level n :

Tn,k = SnSn−1 · · ·Sk+1, Tn,n = E,

and Tn,0 is the resolving operator.
By analogy with [1], we say that the scheme (1.1) is uniformly stable with respect to the initial

data if there exists a positive constant M1 independent of h, {τk}, and the choice of the initial data
such that ∥∥ỹ(1)

n − yn

∥∥
(1n)

≤ M1

∥∥∥ỹ
(1)
k − yk

∥∥∥
(1k)

, k = 0, . . . , n − 1, n = 1, 2, . . . (2.9)

Obviously, the estimate (2.9) is valid if and only if the operator Tn,k of transition from level k to
level n is bounded uniformly with respect to n and k :

‖Tn,k‖ ≤ M1, 0 ≤ k ≤ n − 1, n = 1, 2, . . . (2.10)
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3. THE RELATIONSHIP BETWEEN STABILITY WITH RESPECT
TO THE INITIAL DATA, STABILITY WITH RESPECT TO
THE RIGHT-HAND SIDE, AND COEFFICIENT STABILITY

Theorem 3.1. Suppose that the operators Bn, B̃n, and Ãn are continuously invertible for all
1 ≤ n ≤ n0 < +∞, the operators Ãn, Ãk, and B̃k commute for all 0 ≤ k, n ≤ n0, the operators S1

and S̃1 are bounded in the norm ‖ · ‖Hh→Hh
, i.e.,

‖S1‖ = ‖S1‖Hh→Hh
≤ M,

∥∥∥S̃1

∥∥∥ =
∥∥∥S̃1

∥∥∥
Hh→Hh

≤ M̃, (3.1)

and the operator Ãn satisfies the inequality∥∥∥(
Ãn+1 − Ãn

)
un

∥∥∥
Hh

≤ c0τn+1

∥∥∥Ãnun

∥∥∥
Hh

. (3.2)

Then the following assertions are equivalent :
(1) the scheme (1.1) is uniformly stable with respect to the initial data;
(2) the scheme (1.1) is stable with respect to the right-hand side;
(3) the scheme (1.1) is coefficient stable.

Proof. (1) ⇒ (2). Suppose that the scheme (1.1) is uniformly stable with respect to the initial
data, i.e., an estimate of the form (2.9) is valid for problem (2.4):

∥∥δ(1)
n

∥∥
(1n)

≤ M1

∥∥∥δ
(1)
k

∥∥∥
(1k)

, k = 0, . . . , n − 1, n = 1, 2, . . . (3.3)

Then inequality (2.10) is also valid with ‖Tn,k‖ = ‖Tn,k‖Hh→Hh
.

By virtue of (2.8), the solution of problem (2.5) is given by the formula

δ(2)
n =

n−1∑
k=0

τk+1Tn,k+1B
−1
k (ϕ̃k − ϕk) . (3.4)

This, together with (2.10), implies that

∥∥δ(2)
n

∥∥
(1n)

≤
n−1∑
k=0

τk+1 ‖Tn,k+1‖
∥∥B−1

k (ϕ̃k − ϕk)
∥∥

(1k+1)

≤ M1

n−1∑
k=0

τk+1

∥∥B−1
k (ϕ̃k − ϕk)

∥∥
(1k+1)

≤ M1

n−1∑
k=0

τk+1 ‖ϕ̃k − ϕk‖(2k) .

(3.5)

Therefore, the scheme (1.1) is stable with respect to the right-hand side under the norm compati-
bility condition

‖vk‖(2k) =
∥∥B−1

k vk

∥∥
(1k+1)

.

(2) ⇒ (3). Suppose that the scheme (1.1) is stable with respect to the right-hand side, i.e.,
the estimate (3.5) be valid. We shall prove the boundedness of the operators Tn,k by the technique
in [1]. We choose the perturbed problem (1.2b) so as to ensure that τk+1B

−1
k (ϕ̃k − ϕk) = δk,k0η,

where δk,k0 is the Kronecker delta. Then from (3.5), we have∥∥δ(2)
n

∥∥
(1n)

≤ M1‖η‖(1k0+1), n = 1, . . . , n0, k0 = 0, . . . , n − 1.
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On the other hand, from (3.4), we obtain

δ(2)
n = Tn,k0+1η,

∥∥δ(2)
n

∥∥
(1n)

= ‖Tn,k0+1η‖(1n) ≤ M1‖η‖(1k0+1),

and consequently, ‖Tn,k‖ ≤ M1 for all k = 1, . . . , n − 1. Since Tn,0 = Tn,1S1, it follows from (3.1)
that ‖Tn,0‖ ≤ ‖Tn,1‖‖S1‖ ≤ M1M , i.e., the norms of Tn,k are bounded for all k = 0, . . . , n and
all n = 1, . . . , n0.

Let us estimate the norms of the operators T̃n,k and S̃k = E + τk+1B̃
−1
k Ã−1

k . To this end,
we consider the quantity νk = δ

(1)
k + δ

(2)
k + δ

(3)
k . One can readily see that ν is a solution of the

problem

B̃νt + Ãν = B̃
(
δ(1) + δ(2) − y

)
t
+ Ã

(
δ(1) + δ(2) − y

)
+ ϕ, t ∈ ω̂τ , ν0 = ũ0 − u0 = δ0,

and the representation

νn = T̃nδ0 +
n−1∑
k=0

τk+1T̃n,k+1B̃
−1
k

(
B̃k

(
δ(1) + δ(2) − y

)
t,k

+ Ãk

(
δ(1) + δ(2) − y

)
k

+ ϕk

)

is valid. Since the solution of problem (1.3) can be represented in the form

δn = T̃nδ0 +
n−1∑
k=0

τk+1T̃n,k+1B̃
−1
k

(
ϕ̃k − B̃kyt,k − Ãkyk

)
,

we have

δn = δ(1)
n + δ(2)

n + δ(3)
n

+
n−1∑
k=0

τk+1T̃n,k+1B̃
−1
k

(
ϕ̃k − ϕk − B̃k

(
δ(1) + δ(2)

)
t,k

− Ãk

(
δ(1) + δ(2)

)
k

)
.

From the last relation, for δ(2), we obtain

δ(2)
n =

(
T̃n − Tn

)
δ0 +

n−1∑
k=0

τk+1T̃n,k+1B̃
−1
k

×
(
B̃k

(
δ(1) + δ(2) + y

)
t,k

+ Ãk

(
δ(1) + δ(2) + y

)
k
− ϕ̃k

)
.

We choose the initial data ũ0 and u0 and the right-hand sides ϕ̃k and ϕk as follows:

ũ0 = u0,

ϕk = B̃k

(
δ(1) + δ(2) + y

)
t,k

+ Ãk

(
δ(1) + δ(2) + y

)
k
− 1

τk+1

δk,k0

(
B̃k + B̃k

)
η,

ϕ̃k = ϕk +
1

τk+1

δk,k0Bkη.

Then δ(2)
n = T̃n,k0+1η, τk+1B

−1
k (ϕ̃k − ϕk) = δk,k0η, and it follows from the estimate (3.5) that

‖T̃n,k0+1η‖(1n) ≤ M1‖η‖(1k0+1). Since k0 and n are arbitrary, we have the estimate∥∥∥T̃n,k

∥∥∥ ≤ M1 for all 1 ≤ k ≤ n, n = 1, 2, . . .

The formula T̃n,0 = T̃n,1S̃1 implies the estimate∥∥∥T̃n,0

∥∥∥ ≤
∥∥∥T̃n,1

∥∥∥∥∥∥S̃1

∥∥∥ ≤ M1M3. (3.6)

Consequently, the norms of T̃n,k are bounded for all 0 ≤ k < n and n = 1, . . . , n0.
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By virtue of (2.8), the solution of problem (2.6) is given by the formula

δ(3)
n =

n−1∑
k=0

τk+1Tn,k+1B
−1
k

((
Bk − B̃k

)
ỹ

(3)
t,k +

(
Ak − Ãk

)
ỹ

(3)
k

)
.

Hence we have

∥∥δ(3)
n

∥∥
(1n)

≤
n−1∑
k=0

τk+1 ‖Tn,k+1‖
(∥∥∥B−1

k

(
Bk − B̃k

)
ỹ

(3)
t,k

∥∥∥
(1k)

+
∥∥∥B−1

k

(
Ak − Ãk

)
ỹ

(3)
k

∥∥∥
(1k)

)

≤ M1

n−1∑
k=0

τk+1

(∥∥∥Ak − Ãk

∥∥∥
(3k)

∥∥∥Ãkỹ
(3)
k

∥∥∥
(1k)

+
∥∥∥Bk − B̃k

∥∥∥
(4k)

∥∥∥B̃kỹ
(3)
t,k

∥∥∥
(1k)

)
,

where ∥∥∥Ak − Ãk

∥∥∥
(3k)

=
∥∥∥Ak − Ãk

∥∥∥
HÃ∗

k
Ãk

→H
B

∗−1
k

B
−1
k

= sup
‖Ãkuk‖(1k) �=0

(∥∥∥B−1
k

(
Ak − Ãk

)
uk

∥∥∥
(1k)

/ ∥∥∥Ãkuk

∥∥∥
(1k)

)
,

∥∥∥Bk − B̃k

∥∥∥
(4k)

=
∥∥∥Bk − B̃k

∥∥∥
HB̃∗

k
B̃k

→H
B

∗−1
k

B
−1
k

= sup
‖B̃kuk‖(1k) �=0

(∥∥∥B−1
k

(
Bk − B̃k

)
uk

∥∥∥
(1k)

/∥∥∥B̃kuk

∥∥∥
(1k)

)
.

From Eq. (1.2c), we obtain
∥∥∥B̃kỹt,k

∥∥∥
(1k)

≤ ‖ϕk‖(1k) +
∥∥∥Ãkỹ

(3)
k

∥∥∥
(1k)

.

Let us estimate
∥∥∥Ãkỹ

(3)
k

∥∥∥
(1k)

. The solution of problem (1.2c) is given by the formula

ỹ(3)
n = T̃nu0 +

n−1∑
k=0

τk+1T̃n,k+1B̃
−1
k ϕk.

Then, by taking account of the estimate (3.6), the continuous invertibility of the operator B̃k, and
the fact that ∥∥∥Ãkvk

∥∥∥
(1k)

≤ �
∥∥∥Ãk−1vk

∥∥∥
(1k−1)

, � = max
1≤k≤n

�k, �k = 1 + C0τk,

which follows from condition (3.2), we obtain the inequality

∥∥∥Ãkỹ
(3)
k

∥∥∥ ≤ M1

(
�k

∥∥∥Ã0u0

∥∥∥
(10)

+
k−1∑
j=0

τj+1�
k−j

∥∥∥ÃjB̃
−1
j ϕj

∥∥∥
(1j)

)
.

With regard to the last estimate, we obtain the inequality

∥∥δ(3)
n

∥∥
(1n)

≤ M3

n−1∑
k=0

τk+1

∥∥∥Ak − Ãk

∥∥∥
(3k)

+ M4

n−1∑
k=0

τk+1

∥∥∥Bk − B̃k

∥∥∥
(4k)

,

where

Mi≤ M1

(
�n

∥∥∥Ã0u0

∥∥∥ + (i − 3) max
0≤k≤n−1

‖ϕk‖(1k)+
n−1∑
j=0

τj+1�
n−j

∥∥∥ÃjB̃
−1
j ϕj

∥∥∥
(1j)

)
, i = 3, 4. (3.7)

Therefore, the scheme (1.1) is stable with respect to the operator coefficients.
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(3) ⇒ (1). Now we suppose that the scheme (1.1) is stable with respect to the operator coeffi-
cients, i.e., the estimate (2.3) is valid, where the constants M3 and M4 satisfy inequalities (3.7).

We choose the perturbed operators B̃k and Ãk so as to ensure that
(
Bk − B̃k

)
uk = 0 and(

Ak − Ãk

)
uk = δk,k0τ

−1
k0+1Bkuk for all uk ∈ Hh and k = 0, . . . , n0 − 1. Then δ

(3)
k = Tn,k0+1ỹ

(3)
k0

and

n−1∑
k=0

τk+1

∥∥∥Ak − Ãk

∥∥∥
(3k)

= sup
‖Ãk0uk0‖(1k0

) �=0

‖uk0‖(1k0 )∥∥∥Ãk0uk0

∥∥∥
(1k0 )

= sup
‖vk0‖(1k0

) �=0

∥∥∥Ã−1
k0

vk0

∥∥∥
(1k0 )

‖vk0‖(1k0 )

=
∥∥∥Ã−1

k0

∥∥∥ .

From the last relations and the estimate (2.3), we obtain the estimate∥∥∥Tn,k0+1ỹ
(3)
k0

∥∥∥
(1k0 )

≤ M3

∥∥∥Ã−1
k0

∥∥∥ ,

and consequently, the operators Tn,k are bounded for all k = 1, . . . , n − 1, since the operator Ãk0

is continuously invertible and hence ‖Ã−1
k0
‖ ≤ m, m = const > 0. Condition (3.1) implies that the

operators Tn,k are also bounded for all 0 ≤ k ≤ n − 1 and n = 1, . . . , n0.

Since the solution of problem (2.4) is given by the formula δ(1)
n = Tn,kδ

(1)
k for each k ≤ n − 1,

we have the estimate (3.3) for δ(1)
n , which implies the uniform stability of the scheme (1.1) with

respect to the initial data.
Note that, by using the method in [7], one can prove the equivalence of the notions of stabil-

ity with respect to the initial data, stability with respect to the right-hand side, and coefficient sta-
bility without requiring that the operators Ãn, Ãk, and B̃k commute.
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