THE COMPARATIVE ANALYSIS OF VECTOR SPACE FILTRATIONS

E. V. Gireiko (Minsk, Belarus)

Let (Λ, \leq) be a totally ordered set, $\theta \subseteq \Lambda$, $M = \{M_d\}_{d \in \theta}$, and X a vector space over the field \mathbb{K} .

Definition 1. A map $\lambda: X \to \Lambda$ is called Lyapunov norm [1] or Lyapunov — Bogdanov (L.-B.) functional [2] if the following conditions hold: $\lambda(cx) \leq \lambda(x)$, $\lambda(x+y) \leq \max\{\lambda(x),\lambda(y)\}$ for every $x,y \in X$, $c \in \mathbb{K}$.

By $LB(X,\Lambda)$ denote the set of L.-B. functionals from X to Λ . By $R(\lambda)$ denote the range of functional λ . Note that $\lambda(0) = \min_{x \in X} \lambda(x)$ for every $\lambda \in LB(X,\Lambda)$.

Definition 2. We say that M is prefiltration of X if the following conditions hold:

- i) M_d is a subspace of X for every $d \in \theta$;
- ii) $M_{d_1} \subset M_{d_2}$ for every $d_1, d_2 \in \theta$ such that $d_1 < d_2$;
- iii) $M_d \setminus \widehat{M}_d \neq \emptyset$ for every $d \in \theta$, where $\widehat{M}_d = \bigcup_{i < d} M_i$ if $d \in \theta \setminus \min(\theta)$ and $\widehat{M}_d = \emptyset$ if $d = \min(\theta)$.

Definition 3 [2]. Prefiltration M of X is the \mathcal{B} -filtration of X if $X = \bigcup_{d \in \theta} M_d$.

Definition 4. We say that the prefiltration M of X is the \mathfrak{G} -filtration of X if the set $\{d \in \theta \mid x \in M_d\}$ contains the least element for every $x \in X$.

Statement 1. \mathfrak{G} -filtration of X is a \mathfrak{B} -filtration of X.

Statement 2. B-filtration M of X is \mathfrak{G} -filtration of X if (θ, \leqslant) is a well ordered set. Now we introduce the following notions associated with functional $\lambda: X \to \Lambda$ [2]: $\widetilde{X}_{\lambda d} := \{x \in X \mid \lambda(x) \leqslant d\}$ is a Lebesque set of the functional λ , $\widetilde{\mathbb{X}}_{\lambda} := \{\widetilde{X}_{\lambda d}\}_{d \in R(\lambda)}$ is the condensed spectral family of the functional λ .

Theorem 1. $\widetilde{\mathbb{X}}_{\lambda}$ is a \mathcal{G} -filtration of X for every $\lambda \in LB(X,\Lambda)$.

Theorem 2. The map $\lambda: X \to \theta$ such that $\lambda(x) = d$ for every $x \in M_d \setminus \widehat{M}_d$, $d \in \theta$ is an L.-B. functional if M is \mathfrak{G} -filtration of X.

Theorem 3. Let \mathbb{I} be a set of positive irrational numbers, $\theta := [0, +\infty) \cap \mathbb{Q}$, and X a vector space such that $F := \{\lambda \in LB(X, \theta) \mid R(\lambda) = \theta\} \neq \emptyset$. Then the following assertations are valid for every $\lambda \in F$:

- i) the family $\{\widetilde{X}_{\lambda d}\}_{d\in R(\lambda)\setminus\{q\}}$ is a \mathcal{B} -filtration of X for every $q\in R(\lambda)$;
- ii) the family $\{\widetilde{X}_{\lambda d}\}_{d\in R(\lambda)\setminus\{q\}}$ is not \mathfrak{G} -filtration of X for every $q\in R(\lambda)$;
- iii) $\bigcap_{d \in G(i)} \widetilde{X}_{\lambda d} \notin \widetilde{\mathbb{X}}_{\lambda}$ for every $i \in \mathbb{I}$, where $G(i) = \{q \in \theta \mid i \leqslant q\}$.

The following corollary ensues directly from the theorem 3.

Corollary 1. There exists a \mathcal{B} -filtration M of some vector space X such that it is not \mathcal{G} -filtration of X and its indexing set (θ, \leqslant) contains the least element.

In paper [2] it is shown that every $\mathfrak B$ -filtration of X is the condensed spectral family of some L.-B. functional on X. But it is wrong. It follows from the theorem 1 and the corollary 1. However every $\mathfrak G$ -filtration of X is the condensed spectral family of some L.-B. functional on X. It follows from the theorem 2.

The following corollary ensues directly from the theorems 1 and 3.

Corollary 2. There exists a \mathfrak{G} -filtration M of some vector space X such that every its element is important for \mathfrak{G} -filtration property of X by the family M.

References. 1. Bogdanov Yu. S.// Matematicheskii Sbornik. 1959. Vol. 49. P. 225–231. **2.** Borukhov V.T. Application of Lyapunov — Bogdanov functionals for ultrametrization of abelian groups with operators. Actual problems of mathematics. Grodno: GrSU, 2008. P. 38–48.