APPLICATION OF MULTILEVEL HM-NETWORK AT DESIGNING OF WAREHOUSES SQUARES IN LOGISTICS TRANSPORT SYSTEMS

O. Kiturko
Grodno State University
Grodno, Belarus
sytaya_om@mail.ru

The article deals with the technique allowing to estimate and forecast expected incomes, logistics transport systems subjects warehouse squares. The technique is based on application of HM (Howard-Matalytski) - queueing networks.

Keywords: HM - queueing networks, logistics transport systems, warehouse squares.

1. INTRODUCTION

The logistics structure is a system which consists of various functional areas, such as: stores, information, stacking and warehouse handling, transporting of products and other areas [1]. Thus the main task is cost minimization and profit maximization for producers', customers', warehouses' etc.

Working out LS models is an important problem. The number and the arrangement of producing units (the enterprises, firms, etc.), an amount and the arrangement of warehouses, transport models, connection and information systems are to be taken into consideration.

2. APPLICATION OF NETWORKS AT WAREHOUSE DESIGNING

We'd like to mention that the HM-network can be used not only for LTS subjects expected incomes forecasting, but also for designing of warehouse squares, determination of transport warehouse workers amount in brigades that are engaged in cargo loading and unloading. We will illustrate it in the following example. Let's assume that LTS subjects are n warehouses $S_{1}, S_{2}, \ldots, S_{n}$ between which cargo transportation is carried out. For cars loading and unloading in a warehouse $S_{i} \quad m_{i}$ brigades are created, $i=\overline{1, n}$. For simplicity we suggest that the same brigade is engaged in car unloading and in loading it afterwards with new production for further transportation so that the car's stay idle time was minimum. Transporting of the goods from one subject to another brings the latter some casual income and consequently the income of the first subject is reduced to this random variable (RV), however, or it can be vice versa, it doesn't matter for the model. Let's consider the dynamics of the network system S_{i}
incomes modification (warehouse S_{i} of LTS). Let's designate by $V_{i}(t)$ system S_{i} income at the moment t, and by $v_{i 0}=V_{i}(0)$ its income at the initial moment. Then it is possible to present its income at the moment $t+\Delta t$ as the following:

$$
\begin{equation*}
V_{i}(t+\Delta t)=V_{i}(t)+\Delta V_{i}(t, \Delta t), \tag{1}
\end{equation*}
$$

where $\Delta V_{i}(t, \Delta t)$ - the modification of income QS S_{i} inn time interval $[t, t+\Delta t)$. To determinate this magnitude let's write out probable events which can happen in time Δt, and incomes modification of S_{i} systems connected with these events.

1) With the probability $\lambda(t) p_{0 i} \Delta t+o(\Delta t)$ the request to system S_{i} will be received (to a warehouse S_{i} car) which will bring some income, occupying space $r_{0 i}$, where $r_{0 i}$ RV with expectation $M\left\{r_{0 i}\right\}=a_{0 i}, i=\overline{1, n}$.
2) With the probability $\mu_{i}\left(k_{i}(t)\right) u\left(k_{i}(t)\right) p_{i 0} \Delta t+o(\Delta t)$ the request of S_{i} will go to the outer world, thus income of QS S_{i} will be reduced to the magnitude, occupying the of space $R_{i 0}$, where $R_{i 0}$ - RV from expectation $M\left\{R_{i 0}\right\}=b_{i 0}, i=\overline{1, n}$.
3) With the probability $\mu_{j}\left(k_{j}(t)\right) u\left(k_{j}(t)\right) p_{j i} \Delta t+o(\Delta t)$ the request S_{j} system will pass to the S_{i} system, thus S_{i} system income will increase by magnitude, occupying the space of $r_{j i}$, and the S_{j} income (i.e. the occupied area of the warehouse S_{j}) will decrease by this magnitude, where $r_{j i}$ - RV from expectation $M\left\{r_{j i}\right\}=a_{j i}, i, j=\overline{1, n}, i \neq j$.
4) With the probability $\mu_{i}\left(k_{i}(t)\right) u\left(k_{i}(t)\right) p_{i j} \Delta t+o(\Delta t)$ a request from system S_{i} transits to system S_{j}, thus the income of S_{i} will decrease by magnitude, occupying space $R_{i j}$, and the income of S_{j} (i.e. the occupied square of the warehouse S_{j}) will increase by this magnitude, where $R_{i j}-$ RV from expectation $M\left\{R_{i j}\right\}=b_{i j}, i, j=\overline{1, n}$, $i \neq j$.
5) With the probability $1-\left(\lambda(t) p_{0 i}+\mu_{i}\left(k_{i}(t)\right) u\left(k_{i}(t)\right)+\sum_{\substack{j=1, j \neq i}}^{n} \mu_{j}\left(k_{j}(t)\right) u\left(k_{j}(t)\right) p_{j i}\right) \times$ $\times \Delta t+o(t)$ at time interval $[t, t+\Delta t)$ the S_{i} system state modification will not happen (i.e. the occupied square of the warehouse S_{i} will not vary), $i=\overline{1, n}$.

Besides, for each small time interval Δt system S_{i} (subject S_{i}) increases the income by magnitude $r_{i} \Delta t$ by the means of percent on the money which is in its bank, where r_{i} - RV from expectation $M\left\{r_{i}\right\}=c_{i}, i=\overline{1, n}$. We will consider also that RV $r_{j i}, R_{i j}$, $r_{0 i}, R_{i 0}$ are independent in relation to RV $r_{i}, i, j=\overline{1, n}$.

It is obvious that $r_{j i}=R_{j i}$ with probability 1, i.e.

$$
\begin{equation*}
a_{j i}=b_{j i}, \quad i, j=\overline{1, n} . \tag{2}
\end{equation*}
$$

Then from the mentioned above we can conclude the following, at the fixed realization of process $k(t)$, it is possible to note:

$$
\begin{aligned}
M\left\{\Delta V_{i}(t, \Delta t)\right\} & =\sum_{k} P(k(t)=k) M\left\{\Delta V_{i}(t, \Delta t) / k(t)\right\}= \\
& =\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \cdots \sum_{k_{n}=0}^{\infty} P\left(k(t)=\left(k_{1}(t), k_{2}(t), \ldots, k_{n}(t)\right)\right) \times
\end{aligned}
$$

$$
\begin{aligned}
& \times M\left\{\Delta V_{i}(t, \Delta t) / k(t)=\left(k_{1}(t), k_{2}(t), \ldots, k_{n}(t)\right)\right\}= \\
& =\left[\lambda(t) p_{0 i} a_{0 i}+c_{i}-\left(p_{i 0} b_{i 0}+\sum_{\substack{j=1 \\
j \neq i}}^{n} p_{i j} b_{i j}\right) \sum_{k} P(k(t)=k) \mu_{i}\left(k_{i}(t)\right) u\left(k_{i}(t)\right)+\right. \\
& \left.\quad+\sum_{\substack{j=1 \\
j \neq i}}^{n} p_{j i} a_{j i} \sum_{k} P(k(t)=k) \mu_{j}\left(k_{j}(t)\right) u\left(k_{j}(t)\right)\right] \Delta t+o(\Delta t) .
\end{aligned}
$$

Averaging on $k(t)$ taking into account a normalization state $\sum_{k} P(k(t)=k)=1$, for modification of subject S_{i} expected income we receive:

$$
\begin{aligned}
& M\left\{\Delta V_{i}(t, \Delta t)\right\}= \\
& =\sum_{k} P(k(t)=k) M\left\{\Delta V_{i}(t, \Delta t) / k(t)\right\}= \\
& =\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \ldots \sum_{k_{n}=0}^{\infty} P\left(k(t)=\left(k_{1}(t), k_{2}(t), \ldots, k_{n}(t)\right)\right) \times \\
& \quad \times M\left\{\Delta V_{i}(t, \Delta t) / k(t)=\left(k_{1}(t), k_{2}(t), \ldots, k_{n}(t)\right)\right\}= \\
& \quad+\sum_{\substack{j=1 \\
j \neq i}}^{n} p_{j i} a_{j i} \sum_{k} P(k) p_{0 i} a_{0 i}+c_{i}-\left(p_{i 0} b_{i 0}+\sum_{i j}^{n} p_{i j} b_{i j}\right) \sum_{k} P(k(t)=k) \mu_{i}\left(k_{i}(t)\right) u\left(k_{i}(t)\right)+
\end{aligned}
$$

Let's consider that time intervals of servicing a request in the system S_{i} (intervals of one car "unloadings - loadings" at the warehouse S_{i}) are distributed upon the demonstrative law with parameter $\mu_{i}, i=\overline{1, n}$, and $\lambda(t)=\lambda$. In this case

$$
\mu_{i}\left(k_{i}(t)\right)=\left\{\begin{array}{l}
\mu_{i} k_{i}(t), \quad k_{i}(t) \leq m_{i}, \quad \mu_{i}\left(k_{i}(t)\right) u\left(k_{i}(t)\right)=\mu_{i} \min \left(k_{i}(t), m_{i}\right), \quad i=\overline{1, n} . \\
\mu_{i} m_{i}, \quad k_{i}(t)>m_{i},
\end{array}\right.
$$

Let's assume also that the expression averaging $\mu_{i}\left(k_{i}(t)\right) u\left(k_{i}(t)\right)$ gives $\mu_{i} \min \left(N_{i}(t), m_{i}\right)$, i.e.

$$
\begin{equation*}
M \min \left(k_{i}(t), m_{i}\right)=\min \left(N_{i}(t), m_{i}\right), \tag{3}
\end{equation*}
$$

where $N_{i}(t)$ is the average number of requests (expecting and served) in S_{i} at the moment of time $t, i=\overline{1, n}$. Taking into account this supposition we receive the following approximate relation:

$$
\begin{align*}
M\left\{\Delta V_{i}(t, \Delta t)\right\}=\left[\lambda(t) p_{0 i} a_{0 i}+c_{i}-\right. & \mu_{i} \min \left(N_{i}(t), m_{i}\right)\left(p_{i 0} b_{i 0}+\sum_{\substack{j=1 \\
j \neq i}}^{n} p_{i j} b_{i j}\right)+ \\
& \left.+\sum_{\substack{j=1 \\
j \neq i}}^{n} \mu_{j} \min \left(N_{j}(t), m_{j}\right) p_{j i} a_{j i}\right] \Delta t+o(\Delta t) \tag{4}
\end{align*}
$$

As an elementary stream of requests arrives in a network with intensity λ, i.e. the probability of a requests inflow in S_{i} for time Δt looks like $P_{a}(\Delta t)=\frac{\left(\lambda p_{0 i} \Delta t\right)^{a}}{a!} e^{-\lambda p_{0 i} \Delta t}$, $a=0,1,2, \ldots$, the average number of the requests which have arrived from the outside to S_{i} for time Δt is equal to $\lambda p_{0 i} \Delta t$. We will find the average number of the occupied service lines in S_{i} at the moment $t, i=\overline{1, n}$, by $\rho_{i}(t)$. Then $\mu_{i} \rho_{i}(t) \Delta t$ is the average number of the requests which have abandoned S_{i} for time Δt, and $\sum_{\substack{j=1 \\ j \neq i}}^{n} \mu_{j} \rho_{j}(t) p_{j i} \Delta t$ is the average number of the requests which have arrived to S_{i} from other subjects for time Δt. Therefore

$$
N_{i}(t+\Delta t)-N_{i}(t)=\lambda p_{0 i} \Delta t+\sum_{\substack{j=1 \\ j \neq i}}^{n} \mu_{j} \rho_{j}(t) p_{j i} \Delta t-\mu_{i} \rho_{i}(t) \Delta t, \quad i=\overline{1, n},
$$

Consequently, at the $\Delta t \rightarrow 0$ we receive the UDE system for $N_{i}(t)$:

$$
\begin{equation*}
\frac{d N_{i}(t)}{d t}=\sum_{\substack{j=1 \\ j \neq i}}^{n} \mu_{j} \rho_{j}(t) p_{j i}-\mu_{i} \rho_{i}(t)+\lambda p_{0 i}, \quad i=\overline{1, n} \tag{5}
\end{equation*}
$$

The precise magnitude $\rho_{i}(t)$ is impossible to discover and consequently it is approximated by the expression

$$
\rho_{i}(t)=\left\{\begin{array}{l}
N_{i}(t), N_{i}(t) \leq m_{i}, \\
m_{i}, N_{i}(t)>m_{i},
\end{array}=\min \left(N_{i}(t), m_{i}\right)\right.
$$

Then the set of equations (5) will become

$$
\begin{equation*}
\frac{d N_{i}(t)}{d t}=\sum_{\substack{j=1 \\ j \neq i}}^{n} \mu_{j} p_{j i} \min \left(N_{j}(t), m_{j}\right)-\mu_{i} \min \left(N_{i}(t), m_{i}\right)+\lambda p_{0 i}, \quad i=\overline{1, n} \tag{6}
\end{equation*}
$$

It is a linear UDE system with the discontinious right members. It is necessary to solve it by space phase partition into a series of areas and solve each of them. The
system (6) can be solved, for example, by the means of computer mathematics Maple 8 system.

Let's introduce a sign $v_{i}(t)=M\left\{V_{i}(t)\right\}, i=\overline{1, n}$. Then, from (1), (4) we receive passing to a limit at $\Delta t \rightarrow 0$, we will receive inhomogeneous linear UDE of the first order

$$
\begin{align*}
\frac{d v_{i}(t)}{d t}=-\mu_{i} \min \left(N_{i}(t)\right. & \left., m_{i}\right)\left(p_{i 0} b_{i 0}+\sum_{j=1}^{n} p_{i j} b_{i j}\right)+ \\
& +\sum_{\substack{j=1 \\
j \neq i}}^{n} \mu_{j} \min \left(N_{j}(t), m_{j}\right) p_{j i} a_{j i}+\lambda p_{0 i} a_{0 i}+c_{i}, \quad i=\overline{1, n} \tag{7}
\end{align*}
$$

Having set entry conditions $v_{i}(0)=v_{i 0}, i=\overline{1, n}$, it is possible to discover expected incomes of network systems (average magnitudes of squares occupied in warehouses).

Knowing the expressions for $N_{i}(t)$ and the average warehouse squares occupied with cargoes, it is possible to design the warehouse squares of subjects $S_{i}, i=\overline{1, n}$. Let's consider the following modeling example.

Example 1. We will consider the closed network presented on fig. 1, consisting of $n=15$ one-linear QS, where $K=70$ is the number of requests in the network. The requests service intensities in the network system lines are equal to: $\mu_{1}=\mu_{7}=$ $\mu_{12}=3.5, \mu_{2}=\mu_{5}=\mu_{11}=2.8, \mu_{3}=\mu_{6}=\mu_{10}=\mu_{14}=2.1, \mu_{4}=\mu_{8}=2.2$, $\mu_{9}=\mu_{15}=4.1, \mu_{13}=2.9$ and probabilities of request transitions between QS networks is $p_{15 i}=\frac{1}{14}, p_{i 15}=1, i=\overline{1,14}$, let's define also $p_{i i}=-1, i=\overline{1,15}$, remaining $p_{i j}=0, i, j=\overline{1,15}$.

Fig. 1. The network scheme for example 1
Let's assume that the network functions so that on the average there are no queues observed in the peripheral QS, and the central QS functions in the conditions high workload. Then system DDE for the average number of requests in the network systems (5) will be represented as follows:

$$
\begin{equation*}
\frac{d N_{i}(t)}{d t}=\sum_{j=1}^{14} \mu_{j} p_{j i} N_{j}(t)+\mu_{15} p_{15 i}, \quad i=\overline{1,15} \tag{8}
\end{equation*}
$$

Let's set values of income expectations from transitions between network states in the following way:

$$
\begin{gathered}
c_{i}=9 \sin \frac{\pi}{5(i-1)}, \quad i=\overline{1,16}, \\
a_{15 i}=1.6, i=\overline{1,6}, \quad a_{15 i}=1.1, \quad i=\overline{7,13}, \quad a_{15} 14=1.35, \\
a_{i 15}=(7,11,6,19,28,31,8,17,24,9,12,17,8,13,9), \quad i=\overline{1,14} .
\end{gathered}
$$

Then expected incomes of network systems discovered by the means of the package Mathematica 5.1 provided that at the initial instant of time $v_{i}(0)=5, i=\overline{1,14}$, $v_{15}(0)=50$, and entry conditions $N_{i}(0)=5, i=1,7,9, N_{i}(0)=3, i=2,3,12$, $N_{i}(0)=4, i=4,13,14, N_{i}(0)=6, i=5,8,11, N_{i}(0)=2, \quad i=6,10, \quad N_{15}(0)=$ 18 , behave as it is shown in fig. 2 .

Fig. 2. Expected incomes of systems S_{3}, S_{6}, S_{8}

REFERENCES

1. Nerush JU.M. Commercial logistics - Moscow: Banks and stock exchanges, JUNITI. 1997. P. 271.
