
APPLICATION OF MULTILEVELÍÌ-NETWORK AT DESIGNING OFWAREHOUSES SQUARES INLOGISTICS TRANSPORT SYSTEMSO. KiturkoGrodno State UniversityGrodno, Belarussytaya_om�mail.ruThe artile deals with the tehnique allowing to estimate and foreast expetedinomes, logistis transport systems subjets warehouse squares. The tehnique is basedon appliation of HM (Howard�Matalytski) � queueing networks.Keywords: HM � queueing networks, logistis transport systems, warehouse squares.1. INTRODUCTIONThe logistis struture is a system whih onsists of various funtional areas, suhas: stores, information, staking and warehouse handling, transporting of produts andother areas [1℄. Thus the main task is ost minimization and pro�t maximization forproduers', ustomers', warehouses' et.Working out LS models is an important problem. The number and the arrangementof produing units (the enterprises, �rms, et.), an amount and the arrangement ofwarehouses, transport models, onnetion and information systems are to be taken intoonsideration.2. APPLICATION OF NETWORKS AT WAREHOUSEDESIGNINGWe'd like to mention that the HM-network an be used not only for LTS subjetsexpeted inomes foreasting, but also for designing of warehouse squares, determi-nation of transport warehouse workers amount in brigades that are engaged in argoloading and unloading. We will illustrate it in the following example. Let's assume thatLTS subjets are n warehouses S1, S2, . . . , Sn between whih argo transportation isarried out. For ars loading and unloading in a warehouse Si mi brigades are reated,i = 1; n. For simpliity we suggest that the same brigade is engaged in ar unloadingand in loading it afterwards with new prodution for further transportation so thatthe ar's stay idle time was minimum. Transporting of the goods from one subjet toanother brings the latter some asual inome and onsequently the inome of the �rstsubjet is redued to this random variable (RV), however, or it an be vie versa, itdoesn't matter for the model. Let's onsider the dynamis of the network system Si108



inomes modi�ation (warehouse Si of LTS). Let's designate by Vi(t) system Si inomeat the moment t, and by vi0 = Vi(0) its inome at the initial moment. Then it is possibleto present its inome at the moment t +�t as the following:Vi(t+�t) = Vi(t) + �Vi(t;�t); (1)where �Vi(t;�t) � the modi�ation of inome QS Si inn time interval [t; t + �t). Todeterminate this magnitude let's write out probable events whih an happen in time�t, and inomes modi�ation of Si systems onneted with these events.1) With the probability �(t)p0i�t+ o(�t) the request to system Si will be reeived(to a warehouse Si ar) whih will bring some inome, oupying spae r0i, where r0i �RV with expetation M fr0ig = a0i, i = 1; n.2) With the probability �i(ki(t))u(ki(t))pi0�t + o(�t) the request of Si will go tothe outer world, thus inome of QS Si will be redued to the magnitude, oupying theof spae Ri0, where Ri0 � RV from expetation MfRi0g = bi0, i = 1; n.3) With the probability �j(kj(t))u(kj(t))pji�t + o(�t) the request Sj system willpass to the Si system, thus Si system inome will inrease by magnitude, oupying thespae of rji, and the Sj inome (i.e. the oupied area of the warehouse Sj) will dereaseby this magnitude, where rji � RV from expetation Mfrjig = aji, i; j = 1; n; i 6= j.4) With the probability �i(ki(t))u(ki(t))pij�t + o(�t) a request from system Sitransits to system Sj, thus the inome of Si will derease by magnitude, oupyingspae Rij, and the inome of Sj (i.e. the oupied square of the warehouse Sj) willinrease by this magnitude, where Rij � RV from expetation MfRijg = bij, i; j = 1; n,i 6= j.5) With the probability 1�(�(t)p0i+�i(ki(t))u(ki(t))+ nPj = 1;j 6= i �j(kj(t))u(kj(t))pji)���t+ o(t) at time interval [t; t+�t) the Si system state modi�ation will not happen(i.e. the oupied square of the warehouse Si will not vary), i = 1; n.Besides, for eah small time interval �t system Si (subjet Si) inreases the inomeby magnitude ri�t by the means of perent on the money whih is in its bank, whereri � RV from expetation Mfrig = i, i = 1; n. We will onsider also that RV rji, Rij,r0i, Ri0 are independent in relation to RV ri, i; j = 1; n.It is obvious that rji = Rji with probability 1, i.e.aji = bji; i; j = 1; n: (2)Then from the mentioned above we an onlude the following, àt the �xed realizationof proess k(t), it is possible to note:M f�Vi(t; �t)g =Xk P (k(t) = k)M f�Vi(t; �t)=k(t)g == 1Xk1=0 1Xk2=0 ::: 1Xkn=0P (k(t) = (k1(t); k2(t); :::; kn(t)))�109



�M f�Vi(t; �t)=k(t) = (k1(t); k2(t); :::; kn(t))g == [�(t)p0ia0i + i � (pi0bi0 + nXj = 1j 6= i pijbij)Xk P (k(t) = k)�i(ki(t))u(ki(t))++ nXj = 1j 6= i pjiajiXk P (k(t) = k)�j(kj(t))u(kj(t))℄�t+ o(�t):Averaging on k(t) taking into aount a normalization state Pk P (k(t) = k) = 1, formodi�ation of subjet Si expeted inome we reeive:M f�Vi(t; �t)g =Xk P (k(t) = k)M f�Vi(t; �t)=k(t)g == 1Xk1=0 1Xk2=0 ::: 1Xkn=0P (k(t) = (k1(t); k2(t); :::; kn(t)))��M f�Vi(t; �t)=k(t) = (k1(t); k2(t); :::; kn(t))g == [�(t)p0ia0i + i � (pi0bi0 + nXj = 1j 6= i pijbij)Xk P (k(t) = k)�i(ki(t))u(ki(t))++ nXj = 1j 6= i pjiajiXk P (k(t) = k)�j(kj(t))u(kj(t))℄�t+ o(�t):Let's onsider that time intervals of serviing a request in the system Si (inter-vals of one ar �unloadings � loadings� at the warehouse Si) are distributed upon thedemonstrative law with parameter �i, i = 1; n, and �(t) = �. In this ase�i(ki(t)) = � �iki(t); ki(t) � mi;�imi; ki(t) > mi; �i(ki(t))u(ki(t)) = �imin(ki(t); mi); i = 1; n:Let's assume also that the expression averaging �i(ki(t))u(ki(t)) gives �imin(Ni(t); mi),i.e. M min(ki(t); mi) = min(Ni(t); mi); (3)where Ni(t) is the average number of requests (expeting and served) in Si at themoment of time t, i = 1; n. Taking into aount this supposition we reeive the followingapproximate relation: 110



M f�Vi(t; �t)g = [�(t)p0ia0i + i � �imin(Ni(t); mi)(pi0bi0 + nXj = 1j 6= i pijbij)++ nXj = 1j 6= i �j min(Nj(t); mj)pjiaji℄�t + o(�t): (4)As an elementary stream of requests arrives in a network with intensity �, i.e. theprobability of a requests in�ow in Si for time �t looks like Pa(�t) = (�p0i�t)aa! e��p0i�t,a = 0; 1; 2; :::, the average number of the requests whih have arrived from the outsideto Si for time �t is equal to �p0i�t. We will �nd the average number of the oupiedservie lines in Si at the moment t, i = 1; n, by �i(t). Then �i�i(t)�t is the averagenumber of the requests whih have abandoned Si for time �t, and nPj = 1j 6= i �j�j(t)pji�tis the average number of the requests whih have arrived to Si from other subjets fortime �t. ThereforeNi(t+�t)�Ni(t) = �p0i�t + nXj = 1j 6= i �j�j(t)pji�t� �i�i(t)�t; i = 1; n;Consequently, at the �t! 0 we reeive the UDE system for Ni(t):dNi(t)dt = nXj = 1j 6= i �j�j(t)pji � �i�i(t) + �p0i; i = 1; n: (5)The preise magnitude �i(t) is impossible to disover and onsequently it is approxi-mated by the expression�i(t) = � Ni(t); Ni(t) � mi;mi; Ni(t) > mi; = min(Ni(t); mi) :Then the set of equations (5) will beomedNi(t)dt = nXj = 1j 6= i �jpji min(Nj(t); mj)� �imin(Ni(t); mi) + �p0i; i = 1; n: (6)It is a linear UDE system with the disontinious right members. It is neessary tosolve it by spae phase partition into a series of areas and solve eah of them. The111



system (6) an be solved, for example, by the means of omputer mathematis Maple8 system.Let's introdue a sign vi(t) = MfVi(t)g, i = 1; n. Then, from (1), (4) we reeivepassing to a limit at �t ! 0, we will reeive inhomogeneous linear UDE of the �rstorderdvi(t)dt = ��i min(Ni(t); mi)(pi0bi0 + nXj=1 pijbij)++ nXj = 1j 6= i �j min(Nj(t); mj)pjiaji + �p0ia0i+i; i = 1; n: (7)Having set entry onditions vi(0) = vi0, i = 1; n, it is possible to disover expetedinomes of network systems (average magnitudes of squares oupied in warehouses).Knowing the expressions for Ni(t) and the average warehouse squares oupied withargoes, it is possible to design the warehouse squares of subjets Si, i = 1; n. Let'sonsider the following modeling example.Example 1. We will onsider the losed network presented on �g. 1, onsistingof n = 15 one-linear QS, where K = 70 is the number of requests in the network.The requests servie intensities in the network system lines are equal to: �1 = �7 =�12 = 3:5, �2 = �5 = �11 = 2:8, �3 = �6 = �10 = �14 = 2:1, �4 = �8 = 2:2,�9 = �15 = 4:1, �13 = 2:9 and probabilities of request transitions between QS networksis p15 i = 114 ; pi 15 = 1; i = 1; 14, let's de�ne also pii = �1; i = 1; 15, remainingpij = 0; i; j = 1; 15.

Fig. 1. The network sheme for example 1Let's assume that the network funtions so that on the average there are no queuesobserved in the peripheral QS, and the entral QS funtions in the onditions highworkload. Then system DDE for the average number of requests in the network systems(5) will be represented as follows:dNi(t)dt = 14Xj=1 �jpjiNj(t) + �15p15i; i = 1; 15: (8)112



Let's set values of inome expetations from transitions between network states inthe following way: i = 9 sin �5(i� 1) ; i = 1; 16;a15 i = 1:6; i = 1; 6; a15 i = 1:1; i = 7; 13 ; a15 14 = 1:35;a i 15 = (7; 11; 6; 19; 28; 31; 8; 17; 24; 9; 12; 17; 8; 13; 9); i = 1; 14:Then expeted inomes of network systems disovered by the means of the pakageMathematia 5.1 provided that at the initial instant of time vi(0) = 5; i = 1; 14;v15(0) = 50, and entry onditions Ni(0) = 5; i = 1; 7; 9, Ni(0) = 3; i = 2; 3; 12,Ni(0) = 4; i = 4; 13; 14, Ni(0) = 6; i = 5; 8; 11, Ni(0) = 2; i = 6; 10; N15(0) =18, behave as it is shown in �g. 2.

Fig. 2. Expeted inomes of systems S3, S6, S8
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