
APPLICATION OF MULTILEVELÍÌ-NETWORK AT DESIGNING OFWAREHOUSES SQUARES INLOGISTICS TRANSPORT SYSTEMSO. KiturkoGrodno State UniversityGrodno, Belarussytaya_om�mail.ruThe arti
le deals with the te
hnique allowing to estimate and fore
ast expe
tedin
omes, logisti
s transport systems subje
ts warehouse squares. The te
hnique is basedon appli
ation of HM (Howard�Matalytski) � queueing networks.Keywords: HM � queueing networks, logisti
s transport systems, warehouse squares.1. INTRODUCTIONThe logisti
s stru
ture is a system whi
h 
onsists of various fun
tional areas, su
has: stores, information, sta
king and warehouse handling, transporting of produ
ts andother areas [1℄. Thus the main task is 
ost minimization and pro�t maximization forprodu
ers', 
ustomers', warehouses' et
.Working out LS models is an important problem. The number and the arrangementof produ
ing units (the enterprises, �rms, et
.), an amount and the arrangement ofwarehouses, transport models, 
onne
tion and information systems are to be taken into
onsideration.2. APPLICATION OF NETWORKS AT WAREHOUSEDESIGNINGWe'd like to mention that the HM-network 
an be used not only for LTS subje
tsexpe
ted in
omes fore
asting, but also for designing of warehouse squares, determi-nation of transport warehouse workers amount in brigades that are engaged in 
argoloading and unloading. We will illustrate it in the following example. Let's assume thatLTS subje
ts are n warehouses S1, S2, . . . , Sn between whi
h 
argo transportation is
arried out. For 
ars loading and unloading in a warehouse Si mi brigades are 
reated,i = 1; n. For simpli
ity we suggest that the same brigade is engaged in 
ar unloadingand in loading it afterwards with new produ
tion for further transportation so thatthe 
ar's stay idle time was minimum. Transporting of the goods from one subje
t toanother brings the latter some 
asual in
ome and 
onsequently the in
ome of the �rstsubje
t is redu
ed to this random variable (RV), however, or it 
an be vi
e versa, itdoesn't matter for the model. Let's 
onsider the dynami
s of the network system Si108



in
omes modi�
ation (warehouse Si of LTS). Let's designate by Vi(t) system Si in
omeat the moment t, and by vi0 = Vi(0) its in
ome at the initial moment. Then it is possibleto present its in
ome at the moment t +�t as the following:Vi(t+�t) = Vi(t) + �Vi(t;�t); (1)where �Vi(t;�t) � the modi�
ation of in
ome QS Si inn time interval [t; t + �t). Todeterminate this magnitude let's write out probable events whi
h 
an happen in time�t, and in
omes modi�
ation of Si systems 
onne
ted with these events.1) With the probability �(t)p0i�t+ o(�t) the request to system Si will be re
eived(to a warehouse Si 
ar) whi
h will bring some in
ome, o

upying spa
e r0i, where r0i �RV with expe
tation M fr0ig = a0i, i = 1; n.2) With the probability �i(ki(t))u(ki(t))pi0�t + o(�t) the request of Si will go tothe outer world, thus in
ome of QS Si will be redu
ed to the magnitude, o

upying theof spa
e Ri0, where Ri0 � RV from expe
tation MfRi0g = bi0, i = 1; n.3) With the probability �j(kj(t))u(kj(t))pji�t + o(�t) the request Sj system willpass to the Si system, thus Si system in
ome will in
rease by magnitude, o

upying thespa
e of rji, and the Sj in
ome (i.e. the o

upied area of the warehouse Sj) will de
reaseby this magnitude, where rji � RV from expe
tation Mfrjig = aji, i; j = 1; n; i 6= j.4) With the probability �i(ki(t))u(ki(t))pij�t + o(�t) a request from system Sitransits to system Sj, thus the in
ome of Si will de
rease by magnitude, o

upyingspa
e Rij, and the in
ome of Sj (i.e. the o

upied square of the warehouse Sj) willin
rease by this magnitude, where Rij � RV from expe
tation MfRijg = bij, i; j = 1; n,i 6= j.5) With the probability 1�(�(t)p0i+�i(ki(t))u(ki(t))+ nPj = 1;j 6= i �j(kj(t))u(kj(t))pji)���t+ o(t) at time interval [t; t+�t) the Si system state modi�
ation will not happen(i.e. the o

upied square of the warehouse Si will not vary), i = 1; n.Besides, for ea
h small time interval �t system Si (subje
t Si) in
reases the in
omeby magnitude ri�t by the means of per
ent on the money whi
h is in its bank, whereri � RV from expe
tation Mfrig = 
i, i = 1; n. We will 
onsider also that RV rji, Rij,r0i, Ri0 are independent in relation to RV ri, i; j = 1; n.It is obvious that rji = Rji with probability 1, i.e.aji = bji; i; j = 1; n: (2)Then from the mentioned above we 
an 
on
lude the following, àt the �xed realizationof pro
ess k(t), it is possible to note:M f�Vi(t; �t)g =Xk P (k(t) = k)M f�Vi(t; �t)=k(t)g == 1Xk1=0 1Xk2=0 ::: 1Xkn=0P (k(t) = (k1(t); k2(t); :::; kn(t)))�109



�M f�Vi(t; �t)=k(t) = (k1(t); k2(t); :::; kn(t))g == [�(t)p0ia0i + 
i � (pi0bi0 + nXj = 1j 6= i pijbij)Xk P (k(t) = k)�i(ki(t))u(ki(t))++ nXj = 1j 6= i pjiajiXk P (k(t) = k)�j(kj(t))u(kj(t))℄�t+ o(�t):Averaging on k(t) taking into a

ount a normalization state Pk P (k(t) = k) = 1, formodi�
ation of subje
t Si expe
ted in
ome we re
eive:M f�Vi(t; �t)g =Xk P (k(t) = k)M f�Vi(t; �t)=k(t)g == 1Xk1=0 1Xk2=0 ::: 1Xkn=0P (k(t) = (k1(t); k2(t); :::; kn(t)))��M f�Vi(t; �t)=k(t) = (k1(t); k2(t); :::; kn(t))g == [�(t)p0ia0i + 
i � (pi0bi0 + nXj = 1j 6= i pijbij)Xk P (k(t) = k)�i(ki(t))u(ki(t))++ nXj = 1j 6= i pjiajiXk P (k(t) = k)�j(kj(t))u(kj(t))℄�t+ o(�t):Let's 
onsider that time intervals of servi
ing a request in the system Si (inter-vals of one 
ar �unloadings � loadings� at the warehouse Si) are distributed upon thedemonstrative law with parameter �i, i = 1; n, and �(t) = �. In this 
ase�i(ki(t)) = � �iki(t); ki(t) � mi;�imi; ki(t) > mi; �i(ki(t))u(ki(t)) = �imin(ki(t); mi); i = 1; n:Let's assume also that the expression averaging �i(ki(t))u(ki(t)) gives �imin(Ni(t); mi),i.e. M min(ki(t); mi) = min(Ni(t); mi); (3)where Ni(t) is the average number of requests (expe
ting and served) in Si at themoment of time t, i = 1; n. Taking into a

ount this supposition we re
eive the followingapproximate relation: 110



M f�Vi(t; �t)g = [�(t)p0ia0i + 
i � �imin(Ni(t); mi)(pi0bi0 + nXj = 1j 6= i pijbij)++ nXj = 1j 6= i �j min(Nj(t); mj)pjiaji℄�t + o(�t): (4)As an elementary stream of requests arrives in a network with intensity �, i.e. theprobability of a requests in�ow in Si for time �t looks like Pa(�t) = (�p0i�t)aa! e��p0i�t,a = 0; 1; 2; :::, the average number of the requests whi
h have arrived from the outsideto Si for time �t is equal to �p0i�t. We will �nd the average number of the o

upiedservi
e lines in Si at the moment t, i = 1; n, by �i(t). Then �i�i(t)�t is the averagenumber of the requests whi
h have abandoned Si for time �t, and nPj = 1j 6= i �j�j(t)pji�tis the average number of the requests whi
h have arrived to Si from other subje
ts fortime �t. ThereforeNi(t+�t)�Ni(t) = �p0i�t + nXj = 1j 6= i �j�j(t)pji�t� �i�i(t)�t; i = 1; n;Consequently, at the �t! 0 we re
eive the UDE system for Ni(t):dNi(t)dt = nXj = 1j 6= i �j�j(t)pji � �i�i(t) + �p0i; i = 1; n: (5)The pre
ise magnitude �i(t) is impossible to dis
over and 
onsequently it is approxi-mated by the expression�i(t) = � Ni(t); Ni(t) � mi;mi; Ni(t) > mi; = min(Ni(t); mi) :Then the set of equations (5) will be
omedNi(t)dt = nXj = 1j 6= i �jpji min(Nj(t); mj)� �imin(Ni(t); mi) + �p0i; i = 1; n: (6)It is a linear UDE system with the dis
ontinious right members. It is ne
essary tosolve it by spa
e phase partition into a series of areas and solve ea
h of them. The111



system (6) 
an be solved, for example, by the means of 
omputer mathemati
s Maple8 system.Let's introdu
e a sign vi(t) = MfVi(t)g, i = 1; n. Then, from (1), (4) we re
eivepassing to a limit at �t ! 0, we will re
eive inhomogeneous linear UDE of the �rstorderdvi(t)dt = ��i min(Ni(t); mi)(pi0bi0 + nXj=1 pijbij)++ nXj = 1j 6= i �j min(Nj(t); mj)pjiaji + �p0ia0i+
i; i = 1; n: (7)Having set entry 
onditions vi(0) = vi0, i = 1; n, it is possible to dis
over expe
tedin
omes of network systems (average magnitudes of squares o

upied in warehouses).Knowing the expressions for Ni(t) and the average warehouse squares o

upied with
argoes, it is possible to design the warehouse squares of subje
ts Si, i = 1; n. Let's
onsider the following modeling example.Example 1. We will 
onsider the 
losed network presented on �g. 1, 
onsistingof n = 15 one-linear QS, where K = 70 is the number of requests in the network.The requests servi
e intensities in the network system lines are equal to: �1 = �7 =�12 = 3:5, �2 = �5 = �11 = 2:8, �3 = �6 = �10 = �14 = 2:1, �4 = �8 = 2:2,�9 = �15 = 4:1, �13 = 2:9 and probabilities of request transitions between QS networksis p15 i = 114 ; pi 15 = 1; i = 1; 14, let's de�ne also pii = �1; i = 1; 15, remainingpij = 0; i; j = 1; 15.

Fig. 1. The network s
heme for example 1Let's assume that the network fun
tions so that on the average there are no queuesobserved in the peripheral QS, and the 
entral QS fun
tions in the 
onditions highworkload. Then system DDE for the average number of requests in the network systems(5) will be represented as follows:dNi(t)dt = 14Xj=1 �jpjiNj(t) + �15p15i; i = 1; 15: (8)112



Let's set values of in
ome expe
tations from transitions between network states inthe following way: 
i = 9 sin �5(i� 1) ; i = 1; 16;a15 i = 1:6; i = 1; 6; a15 i = 1:1; i = 7; 13 ; a15 14 = 1:35;a i 15 = (7; 11; 6; 19; 28; 31; 8; 17; 24; 9; 12; 17; 8; 13; 9); i = 1; 14:Then expe
ted in
omes of network systems dis
overed by the means of the pa
kageMathemati
a 5.1 provided that at the initial instant of time vi(0) = 5; i = 1; 14;v15(0) = 50, and entry 
onditions Ni(0) = 5; i = 1; 7; 9, Ni(0) = 3; i = 2; 3; 12,Ni(0) = 4; i = 4; 13; 14, Ni(0) = 6; i = 5; 8; 11, Ni(0) = 2; i = 6; 10; N15(0) =18, behave as it is shown in �g. 2.

Fig. 2. Expe
ted in
omes of systems S3, S6, S8
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